• Mi Re-Unir
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Buscar 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar

    Buscar

    Mostrar filtros avanzadosOcultar filtros avanzados

    Filtros

    Use filtros para refinar sus resultados.

    Mostrando ítems 1-10 de 10

    • Opciones de clasificación:
    • Relevancia
    • Título Asc
    • Título Desc
    • Fecha Asc
    • Fecha Desc
    • Fecha Publicación Asc
    • Fecha Publicación Desc
    • Resultados por página:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Different methods for solving STEM problems 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2019-05)
    We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used ...

    Unified local convergence for newton's method and uniqueness of the solution of equations under generalized conditions in a Banach space 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo (Mathematics, 2019-05)
    Under the hypotheses that a function and its Frechet derivative satisfy some generalized Newton-Mysovskii conditions, precise estimates on the radii of the convergence balls of Newton's method, and of the uniqueness ball ...

    New Improvement of the Domain of Parameters for Newton’s Method 

    Amorós, Cristina ; Argyros, Ioannis K; González, Daniel; Magreñán, Á. Alberto; Regmi, Samundra; Sarría, Íñigo (Mathematics, 2020-01)
    There is a need to extend the convergence domain of iterative methods for computing a locally unique solution of Banach space valued operator equations. This is because the domain is small in general, limiting the applicability ...

    Study of local convergence and dynamics of a king-like two-step method with applications 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo ; Sicilia, Juan Antonio (Mathematics, 2020-07-01)
    In this paper, we present the local results of the convergence of the two-step King-like method to approximate the solution of nonlinear equations. In this study, we only apply conditions to the first derivative, because ...

    Advances in the Semilocal Convergence of Newton's Method with Real-World Applications 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara; Sarría, Íñigo (Mathematics, 2019-03-24)
    The aim of this paper is to present a new semi-local convergence analysis for Newton's method in a Banach space setting. The novelty of this paper is that by using more precise Lipschitz constants than in earlier studies ...

    Study of a high order family: Local convergence and dynamics 

    Amorós, Cristina ; Argyros, Ioannis K; González-Crespo, Rubén ; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo (Mathematics, 2019-03-01)
    The study of the dynamics and the analysis of local convergence of an iterative method, when approximating a locally unique solution of a nonlinear equation, is presented in this article. We obtain convergence using a ...

    Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications 

    Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto ; Sarría, Íñigo ; González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 2022-04)
    In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ...

    Local convergence and the dynamics of a family of high convergence order method for solving nonlinear equations 

    Magreñán, Á. Alberto ; Argyros, Ioannis K; Sarría, Íñigo ; Sicilia, Juan Antonio (AIP Conference Proceedings, 2018)
    We present the local convergence analysis and the study of the dynamics of a higher order iterative method in order to approximate a locally unique solution of multiplicity greater than one of a nonlinear equation. The ...

    Ball comparison between frozen Potra and Schmidt-Schwetlick schemes with dynamical analysis 

    Argyros, Michael I; Argyros, Ioannis K; González, Daniel; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo (Computational and Mathematical Methods, 2021)
    In this article, we propose a new research related to the convergence of the frozen Potra and Schmidt-Schwetlick schemes when we apply to equations. The purpose of this study is to introduce a comparison between two solutions ...

    Local and Semi-local convergence for Chebyshev two point like methods with applications in different fields 

    Argyros, Christopher I.; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto; Sarría, Íñigo (Journal of Computational and Applied Mathematics, 2023)
    The convergence is developed for a large class of Chebyshev-two point-like methods for solving Banach space valued equations. Both the local as well as the semi-local convergence is provided for these methods under general ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta comunidadPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso

    afina tu búsqueda

    Autor
    Argyros, Ioannis K (10)
    Magreñán, Á. Alberto (8)
    Sarría, Íñigo (8)
    Argyros, Michael I (3)Moysi, Alejandro (3)... ver todoPalabra claveScopus (9)JCR (7)local convergence (5)banach space (4)Banach space (2)... ver todoFecha2023 (1)2022 (1)2021 (1)2020 (2)2019 (4)2018 (1)






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja