Mostrar el registro sencillo del ítem

dc.contributor.authorModesto-Mata, Mario
dc.contributor.authorDe la Fuente Valentín, Luis
dc.contributor.authorHlusko, Leslea
dc.contributor.authorMartínez de Pinillos, Marina
dc.contributor.authorTowle, Ian
dc.contributor.authorGarcía-Campos, Cecilia
dc.contributor.authorMartinón-Torres, María
dc.contributor.authorBermúdez de Castro, José María
dc.date2024
dc.date.accessioned2024-12-10T12:49:04Z
dc.date.available2024-12-10T12:49:04Z
dc.identifier.citationModesto-Mata, M., de la Fuente Valentín, L., Hlusko, L. J., Martínez de Pinillos, M., Towle, I., García-Campos, C., Martinón-Torres, M., & Bermúdez de Castro, J. M. (2024). Artificial neural networks reconstruct missing perikymata in worn teeth. The Anatomical Record, 307(9), 3120–3138. https://doi.org/10.1002/ar.25416es_ES
dc.identifier.issn1932-8494
dc.identifier.issn1932-8486
dc.identifier.urihttps://reunir.unir.net/handle/123456789/17527
dc.description.abstractDental evolutionary studies in hominins are key to understanding how our ancestors and close fossil relatives grew from the early stages of embryogenesis into adults. In a sense, teeth are like an airplane's ‘black box’ as they record important variables for assessing developmental timing, enabling comparisons within and between populations, species, and genera. The ability to discern this type of nuanced information is embedded in the nature of how tooth enamel and dentin form: incrementally and over years. This incremental growth leaves chronological indicators in the histological structure of enamel, visible on the crown surface as perikymata. These structures are used in the process of reconstructing the rate and timing of tooth formation. Unfortunately, the developmentally earliest growth lines in lateral enamel are quickly lost to wear once the tooth crown erupts. We developed a method to reconstruct these earliest, missing perilymata from worn teeth through knowledge of the later-developed, visible perikymata for all tooth types (incisors, canines, premolars, and molars) using a modern human dataset. Building on our previous research using polynomial regressions, here we describe an artificial neural networks (ANN) method. This new ANN method mostly predicts within 2 counts the number of perikymata present in each of the first three deciles of the crown height for all tooth types. Our ANN method for estimating perikymata lost through wear has two immediate benefits: more accurate values can be produced and worn teeth can be included in dental research. This tool is available on the open-source platform R within the package teethR released under GPL v3.0 license, enabling other researchers the opportunity to expand their datasets for studies of periodicity in histological growth, dental development, and evolution.es_ES
dc.language.isoenges_ES
dc.publisherThe Anatomical Recordes_ES
dc.relation.ispartofseries;vol. 307, n. 9
dc.relation.urihttps://anatomypubs.onlinelibrary.wiley.com/doi/10.1002/ar.25416es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectenameles_ES
dc.subjectneural networkes_ES
dc.subjectperikymataes_ES
dc.subjectreconstructiones_ES
dc.subjecttoothes_ES
dc.titleArtificial neural networks reconstruct missing perikymata in worn teethes_ES
dc.typearticlees_ES
reunir.tag~OPUes_ES
dc.identifier.doihttps://doi.org/10.1002/ar.25416


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem