Design of Traffic Electronic Information Signal Acquisition System Based on Internet of Things Technology and Artificial Intelligence
Autor:
Hongling, Wang
Fecha:
09/2024Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)Citación:
H. Wang. Design of Traffic Electronic Information Signal Acquisition System Based on Internet of Things Technology and Artificial Intelligence, International Journal of Interactive Multimedia and Artificial Intelligence, vol. 8, no. 7, pp. 97-105, 2024, http://dx.doi.org/10.9781/ijimai.2024.08.002Tipo de Ítem:
Articulo Revista IndexadaDirección web:
https://www.ijimai.org/journal/bibcite/reference/3472Resumen:
This study aims to devise a traffic electronic information signal acquisition system employing Internet of Things and artificial intelligence technologies, offering a novel approach to address prevailing challenges related to traffic congestion and safety. Initially, the hardware circuit for the high-speed signal acquisition control core is developed, leveraging Field-Programmable Gate Array technology. This facilitates wireless monitoring of signal acquisition. Subsequently, a comprehensive time signal acquisition system is formulated, encompassing modules for communication, acquisition, storage, adaptive measurement, and signal analysis. The geomagnetic acquisition module within this system is utilized for collecting geomagnetic signals, which are then translated into switch signals indicating the presence or absence of vehicles. These signals are subsequently transmitted to the geomagnetic signal processor. Experimental results pertaining to the signal acquisition system reveal a notable peak storage speed of 200KB/s, considering the utilization of one million sampling points. Across a series of tests, the maximum relative error of the obtained results ranges from 2.2% to 2.7%, underscoring the consistency and reliability of the measurements. In comparison to existing testing devices, the system exhibits heightened accuracy in test results, rendering it more apt for traffic signal acquisition applications. In conclusion, this study accomplishes the collection and dissemination of diverse traffic information, furnishing robust support for traffic control and ensuring safe operations.
Ficheros en el ítem
Nombre: Design of Traffic Electronic Information Signal Acquisition System Based on Internet of Things Technology and Artificial Intelligence.pdf
Tamaño: 404.1Kb
Formato: application/pdf
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
63 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
29 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Twelve-crystal prototype of Li2MoO4 scintillating bolometers for CUPID and CROSS experiments
Alfonso, K.; Armatol, A.; Augier, C.; Avignone III, F. T.; Azzolini, O.; Balata, M.; Bandac, I.C.; Barabash, A. S.; Bari, G.; Barresi, A.; Baudin, D.; Bellini, F.; Benato, G.; Berest, V.; Beretta, M.; Bettelli, M.; Biassoni, M.; Billard, J.; Boldrini, V.; Branca, A.; Brofferio, C.; Bucci, C.; Calvo-Mozota, José María; Camilleri, J.; Campani, A.; Capelli, C.; Capelli, S.; Cappelli, L.; Cardani, L.; Carniti, P.; Casali, N.; Celi, E.; Chang, C.; Chiesa, D.; Clemenza, M.; Colantoni, I.; Copello, S.; Craft, E.; Cremonesi, O.; Creswick, R. J.; Cruciani, A.; D'Addabbo, A.; D'Imperio, G.; Dabagov, S.; Dafinei, I.; Danevich, F. A.; De Jesus, M.; de Marcillac, P.; Dell'Oro, S.; Di Domizio, S.; Di Lorenzo, S.; Dixon, T.; Dompé, V.; Drobizhev, A.; Dumoulin, L.; Fantini, G.; Faverzani, M.; Ferri, E.; Ferri, F.; Ferroni, F.; Figueroa-Feliciano, E.; Foggetta, L.; Formaggio, J.; Franceschi, A.; Fu, C.; Fu, S.; Fujikawa, B. K.; Gallas, A.; Gascon, J.; Ghislandi, S.; Giachero, A.; Gianvecchio, A.; Girola, M.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Grant, C.; Gras, P.; Guillaumon, P. V.; Gutierrez, T. D.; Han, K.; Hansen, E. V.; Heeger, K. M.; Helis, D. L.; Huang, H. Z.; Ianni, A.; Imbert, L.; Johnston, J.; Juillard, A.; Karapetrov, G.; Keppel, G.; Khalife, H.; Kobychev, V. V.; Kolomensky, Yu. G.; Konovalov, S.I.; Kowalski, R.; Langford, T.; Lefevre, M.; Liu, R.; Liu, Y.; Loaiza, P.; Ma, L.; Madhukuttan, M.; Mancarella, F.; Marrache-Kikuchi, C. A.; Marini, L.; Marnieros, S.; Martinez, M.; Maruyama, R. H.; Ph. Mas; Mayer, D.; Mazzitelli, G.; Mei, Y.; Milana, S.; Morganti, S.; Napolitano, T.; Nastasi, M.; Nikkel, J.; Nisi, S.; Nones, C.; Norman, E. B.; Novosad, V.; Nutini, I.; O'Donnell, T.; Olivieri, E.; Olmi, M.; Ouellet, J. L.; Pagan, S.; Pagliarone, C.; Pagnanini, L.; Pattavina, L.; Pavan, M.; Peng, H.; Pessina, G.; Pettinacci, V.; Pira, C.; Pirro, S.; Poda, D. V.; Polischuk, O. G.; Ponce, I.; Pozzi, S.; Previtali, E.; Puiu, A.; Quitadamo, S.; Ressa, A.; Rizzoli, R.; Rosenfeld, C.; Rosier, P.; Scarpaci, J. A.; Schmidt, B.; Sharma, V.; Shlegel, V. N.; Singh, V.; Sisti, M.; Slocum, P.; Speller, D.; Surukuchi, P. T.; Taffarello, L.; Tomei, C.; Torres, J. A.; Tretyak, V. I.; Tsymbaliuk, A.; Velazquez, M.; Vetter, K. J.; Wagaarachchi, S. L.; Wang, G.; Wang, L.; Wang, R.; Welliver, B.; Wilson, J.; Wilson, K.; Winslow, L. A.; Xue, M.; Yan, L.; Yang, J; Yefremenko, V.; Umatov, V. I.; Zarytskyy, M. M.; Zhang, J.; Zolotarova, A.; Zucchelli, S. (Journal of Instrumentation, 2023)An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, ... -
A Comprehensive Framework for Comparing Textbooks: Insights from the Literature and Experts
Huang, Ronghuai; Tlili, Ahmed; Zhang, Xiangling; Sun, Tianyue; Wang, Junyu; Sharma, Ramesh Chander; Affouneh, Saida; Salha, Soheil Hussein; Altinay, Fahriye; Altinay, Zehra; Olivier, Jako; Jemni, Mohamed; Wang, Yiping; Zhao, Jialu; Burgos, Daniel (Sustainable, 2022)Textbooks are essential components in the learning process. They assist in achieving educational learning outcomes and developing social and cultural values. However, limited studies provide comprehensive frameworks for ... -
Eye-Tracking Signals Based Affective Classification Employing Deep Gradient Convolutional Neural Networks
Li, Yuanfeng; Deng, Jiangang; Wu, Qun; Wang, Ying (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)Utilizing biomedical signals as a basis to calculate the human affective states is an essential issue of affective computing (AC). With the in-depth research on affective signals, the combination of multi-model cognition ...