Eye-Tracking Signals Based Affective Classification Employing Deep Gradient Convolutional Neural Networks
Autor:
Li, Yuanfeng
; Deng, Jiangang
; Wu, Qun
; Wang, Ying
Fecha:
12/2021Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)Tipo de Ítem:
articleDirección web:
https://www.ijimai.org/journal/bibcite/reference/2961Resumen:
Utilizing biomedical signals as a basis to calculate the human affective states is an essential issue of affective computing (AC). With the in-depth research on affective signals, the combination of multi-model cognition and physiological indicators, the establishment of a dynamic and complete database, and the addition of high-tech innovative products become recent trends in AC. This research aims to develop a deep gradient convolutional neural network (DGCNN) for classifying affection by using an eye-tracking signals. General
signal process tools and pre-processing methods were applied firstly, such as Kalman filter, windowing with hamming, short-time Fourier transform (SIFT), and fast Fourier transform (FTT). Secondly, the eye-moving and tracking signals were converted into images. A convolutional neural networks-based training structure was subsequently applied; the experimental dataset was acquired by an eye-tracking device by assigning four affective stimuli (nervous, calm, happy, and sad) of 16 participants. Finally, the performance of DGCNN was compared with a decision tree (DT), Bayesian Gaussian model (BGM), and k-nearest neighbor (KNN) by using indices of true positive rate (TPR) and false negative rate (FPR). Customizing mini-batch, loss, learning rate, and gradients definition for the training structure of the deep neural network was also deployed finally. The predictive classification matrix showed the effectiveness of the proposed method for eye moving and tracking signals, which performs more than 87.2% inaccuracy. This research provided a feasible way to find more natural human-computer interaction through eye moving and tracking signals and has potential application on the affective production design process.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
76 |
341 |
220 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
47 |
176 |
187 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Simplified inverse filter tracked affective acoustic signals classification incorporating deep convolutional neural networks
Kuang, Yuxiang; Wu, Qun; Wang, Ying; Dey, Nilanjan; Shi, Fuqian; González-Crespo, Rubén ; Simon Sherratt, R. (Applied Soft Computing, 12/2020)Facial expressions, verbal, behavioral, such as limb movements, and physiological features are vital ways for affective human interactions. Researchers have given machines the ability to recognize affective communication ... -
Twelve-crystal prototype of Li2MoO4 scintillating bolometers for CUPID and CROSS experiments
Alfonso, K.; Armatol, A.; Augier, C.; Avignone III, F. T.; Azzolini, O.; Balata, M.; Bandac, I.C.; Barabash, A. S.; Bari, G.; Barresi, A.; Baudin, D.; Bellini, F.; Benato, G.; Berest, V.; Beretta, M.; Bettelli, M.; Biassoni, M.; Billard, J.; Boldrini, V.; Branca, A.; Brofferio, C.; Bucci, C.; Calvo-Mozota, José María; Camilleri, J.; Campani, A.; Capelli, C.; Capelli, S.; Cappelli, L.; Cardani, L.; Carniti, P.; Casali, N.; Celi, E.; Chang, C.; Chiesa, D.; Clemenza, M.; Colantoni, I.; Copello, S.; Craft, E.; Cremonesi, O.; Creswick, R. J.; Cruciani, A.; D'Addabbo, A.; D'Imperio, G.; Dabagov, S.; Dafinei, I.; Danevich, F. A.; De Jesus, M.; de Marcillac, P.; Dell'Oro, S.; Di Domizio, S.; Di Lorenzo, S.; Dixon, T.; Dompé, V.; Drobizhev, A.; Dumoulin, L.; Fantini, G.; Faverzani, M.; Ferri, E.; Ferri, F.; Ferroni, F.; Figueroa-Feliciano, E.; Foggetta, L.; Formaggio, J.; Franceschi, A.; Fu, C.; Fu, S.; Fujikawa, B. K.; Gallas, A.; Gascon, J.; Ghislandi, S.; Giachero, A.; Gianvecchio, A.; Girola, M.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Grant, C.; Gras, P.; Guillaumon, P. V.; Gutierrez, T. D.; Han, K.; Hansen, E. V.; Heeger, K. M.; Helis, D. L.; Huang, H. Z.; Ianni, A.; Imbert, L.; Johnston, J.; Juillard, A.; Karapetrov, G.; Keppel, G.; Khalife, H.; Kobychev, V. V.; Kolomensky, Yu. G.; Konovalov, S.I.; Kowalski, R.; Langford, T.; Lefevre, M.; Liu, R.; Liu, Y.; Loaiza, P.; Ma, L.; Madhukuttan, M.; Mancarella, F.; Marrache-Kikuchi, C. A.; Marini, L.; Marnieros, S.; Martinez, M.; Maruyama, R. H.; Ph. Mas; Mayer, D.; Mazzitelli, G.; Mei, Y.; Milana, S.; Morganti, S.; Napolitano, T.; Nastasi, M.; Nikkel, J.; Nisi, S.; Nones, C.; Norman, E. B.; Novosad, V.; Nutini, I.; O'Donnell, T.; Olivieri, E.; Olmi, M.; Ouellet, J. L.; Pagan, S.; Pagliarone, C.; Pagnanini, L.; Pattavina, L.; Pavan, M.; Peng, H.; Pessina, G.; Pettinacci, V.; Pira, C.; Pirro, S.; Poda, D. V.; Polischuk, O. G.; Ponce, I.; Pozzi, S.; Previtali, E.; Puiu, A.; Quitadamo, S.; Ressa, A.; Rizzoli, R.; Rosenfeld, C.; Rosier, P.; Scarpaci, J. A.; Schmidt, B.; Sharma, V.; Shlegel, V. N.; Singh, V.; Sisti, M.; Slocum, P.; Speller, D.; Surukuchi, P. T.; Taffarello, L.; Tomei, C.; Torres, J. A.; Tretyak, V. I.; Tsymbaliuk, A.; Velazquez, M.; Vetter, K. J.; Wagaarachchi, S. L.; Wang, G.; Wang, L.; Wang, R.; Welliver, B.; Wilson, J.; Wilson, K.; Winslow, L. A.; Xue, M.; Yan, L.; Yang, J; Yefremenko, V.; Umatov, V. I.; Zarytskyy, M. M.; Zhang, J.; Zolotarova, A.; Zucchelli, S. (Journal of Instrumentation, 2023)An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, ... -
A Comprehensive Framework for Comparing Textbooks: Insights from the Literature and Experts
Huang, Ronghuai; Tlili, Ahmed; Zhang, Xiangling; Sun, Tianyue; Wang, Junyu; Sharma, Ramesh Chander; Affouneh, Saida; Salha, Soheil Hussein; Altinay, Fahriye; Altinay, Zehra; Olivier, Jako; Jemni, Mohamed; Wang, Yiping; Zhao, Jialu; Burgos, Daniel (Sustainable, 2022)Textbooks are essential components in the learning process. They assist in achieving educational learning outcomes and developing social and cultural values. However, limited studies provide comprehensive frameworks for ...