Mostrar el registro sencillo del ítem
Online SARIMA applied for short-term electricity load forecasting
dc.contributor.author | Nguyen, Thi Ngoc Anh | |
dc.contributor.author | Nguyen, Nhat Anh | |
dc.contributor.author | Tran, Ngoc Thang | |
dc.contributor.author | Kumar Solanki, Vijender | |
dc.contributor.author | González Crespo, Rubén | |
dc.contributor.author | Nguyen, Quang Dat | |
dc.date | 2024 | |
dc.date.accessioned | 2024-08-29T08:47:21Z | |
dc.date.available | 2024-08-29T08:47:21Z | |
dc.identifier.citation | Anh, N.T.N., Anh, N.N., Thang, T.N. et al. Online SARIMA applied for short-term electricity load forecasting. Appl Intell 54, 1003–1019 (2024). https://doi.org/10.1007/s10489-023-05230-y | es_ES |
dc.identifier.issn | 1573-7497 | |
dc.identifier.issn | 0924-669X | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/17328 | |
dc.description.abstract | Short-term Load Forecasting (STLF) plays a crucial role in balancing the supply and demand of load dispatching operations and ensures stability for the power system. With the advancement of real-time smart sensors in power systems, it is of great significance to develop techniques to handle data streams on-the-fly to improve operational efficiency. In this paper, we propose an online variant of Seasonal Autoregressive Integrated Moving Average (SARIMA) to forecast electricity load sequentially. The proposed model is utilized to forecast the hourly electricity load of northern Vietnam and achieves a mean absolute percentage error (MAPE) of 4.57%. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Applied Intelligence | es_ES |
dc.relation.ispartofseries | ;vol. 54 | |
dc.relation.uri | https://link.springer.com/article/10.1007/s10489-023-05230-y | es_ES |
dc.rights | restrictedAccess | es_ES |
dc.subject | time series | es_ES |
dc.subject | Online SARIMA | es_ES |
dc.subject | short term forecast | es_ES |
dc.subject | online processing | es_ES |
dc.subject | Scopus | es_ES |
dc.title | Online SARIMA applied for short-term electricity load forecasting | es_ES |
dc.type | Articulo Revista Indexada | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.1007/s10489-023-05230-y |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |