Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Ansorena, Iñigo
dc.date2023
dc.date.accessioned2024-08-20T10:51:47Z
dc.date.available2024-08-20T10:51:47Z
dc.identifier.citationLópez Ansorena, I. (2023). Service anomaly detection in dry bulk terminals: a machine learning approach. International Journal of Shipping and Transport Logistics, 17(3), 281-302.es_ES
dc.identifier.issn1756-6517
dc.identifier.issn1756-6525
dc.identifier.urihttps://reunir.unir.net/handle/123456789/17283
dc.description.abstractBulk terminals are complex environments due to a number of variables that affect terminal performance. Although the analysis of big datasets is destined to become an important component of terminal management, previous research has not addressed this issue yet. This paper aims to shed new light on the operation of dry bulk terminals through a two-stage method based on unsupervised machine learning techniques. The first step gives an overview of the terminal's performance, revealing the strongest associations between the variables, while the second calculates an anomaly score for each vessel through an optimised implementation of the isolation forest. As a result, we detect anomalous services which could be directly attributable to the terminal operator. This method can be used to increase transparency in service and assist the terminal operator and ship agents in future contracts.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Shipping and Transport Logisticses_ES
dc.relation.ispartofseries;vol. 17, nº 3
dc.relation.urihttps://www.inderscienceonline.com/doi/abs/10.1504/IJSTL.2023.134736es_ES
dc.rightsopenAccesses_ES
dc.subjectbulk cargo terminalses_ES
dc.subjectterminal performancees_ES
dc.subjectmachine learninges_ES
dc.subjectassociation discoveryes_ES
dc.subjectanomaly detectiones_ES
dc.subjectanomalous servicees_ES
dc.subjectinefficient servicees_ES
dc.subjectassociation ruleses_ES
dc.titleService anomaly detection in dry bulk terminals: a machine learning approaches_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1504/IJSTL.2023.134736


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem