• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Symbolic AI for XAI: Evaluating LFIT Inductive Programming for Explaining Biases in Machine Learning

    Autor: 
    Ortega, Alfonso
    ;
    Fierrez, Julian
    ;
    Morales, Aythami
    ;
    Wang, Zilong
    ;
    De la Cruz, Marina
    ;
    Alonso, César Luis
    ;
    Ribeiro, Tony
    Fecha: 
    2021
    Palabra clave: 
    explainable artificial intelligence; inductive logic programming; fair recruitment; fair income level; propositional logic; Scopus
    Revista / editorial: 
    Computers
    Citación: 
    Ortega A, Fierrez J, Morales A, Wang Z, de la Cruz M, Alonso CL, Ribeiro T. Symbolic AI for XAI: Evaluating LFIT Inductive Programming for Explaining Biases in Machine Learning. Computers. 2021; 10(11):154. https://doi.org/10.3390/computers10110154
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/17235
    DOI: 
    https://doi.org/10.3390/computers10110154
    Dirección web: 
    https://www.mdpi.com/2073-431X/10/11/154
    Open Access
    Resumen:
    Machine learning methods are growing in relevance for biometrics and personal information processing in domains such as forensics, e-health, recruitment, and e-learning. In these domains, white-box (human-readable) explanations of systems built on machine learning methods become crucial. Inductive logic programming (ILP) is a subfield of symbolic AI aimed to automatically learn declarative theories about the processing of data. Learning from interpretation transition (LFIT) is an ILP technique that can learn a propositional logic theory equivalent to a given black-box system (under certain conditions). The present work takes a first step to a general methodology to incorporate accurate declarative explanations to classic machine learning by checking the viability of LFIT in a specific AI application scenario: fair recruitment based on an automatic tool generated with machine learning methods for ranking Curricula Vitae that incorporates soft biometric information (gender and ethnicity). We show the expressiveness of LFIT for this specific problem and propose a scheme that can be applicable to other domains. In order to check the ability to cope with other domains no matter the machine learning paradigm used, we have done a preliminary test of the expressiveness of LFIT, feeding it with a real dataset about adult incomes taken from the US census, in which we consider the income level as a function of the rest of attributes to verify if LFIT can provide logical theory to support and explain to what extent higher incomes are biased by gender and ethnicity.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Symbolic AI for XAI Evaluating LFIT Inductive Programming for Explaining Biases in Machine Learning.pdf
    Tamaño: 879.9Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    66
    113
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    13
    18

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Symbolic AI for XAI: Evaluating LFIT inductive programming for explaining biases in machine learning 

      Ortega, Alfonso; Fierrez, Julian; Morales, Aythami; Wang, Zilong; de la Cruz, Marina (MDPI, 2021)
      Machine learning methods are growing in relevance for biometrics and personal information processing in domains such as forensics, e-health, recruitment, and e-learning. In these domains, white-box (human-readable) ...
    • Impact of immunosuppression on Listeria monocytogenes infection in Spain 

      Vázquez, Elena; de Gregorio, Óscar; Álvarez, Carmen; Soriano, Vicente; Corral, Octavio; Ortega-de la Puente, Alfonso; de la Cruz-Echeandía, Marina; Blanco-Valencia, Xiomara Patricia; Royuela, Ana; Martín-Portugués, Mario; Esteban-Sampedro, Jorge; Moreno-Torres, Víctor (Pathogens and Global Health, 2025)
      Introduction Immunosuppression (IS) determines a higher risk of disease severity from Listeria monocytogenes (LM) infection. Methods We examined the epidemiology of IS in all patients hospitalized with LM in Spain ...
    • Neoplasm related mortality risk in Systemic Sclerosis: a nationwide study 

      Martínez-Urbistondo, María; González-Guzmán, Antonio; Fernández-Guitián, Román; Blanco-Valencia, Xiomara Patricia; Esteban-Sampedro, Jorge; Martín-Portugués, Mario; Durán-del Campo, Pedro; Tutor, Pablo; Mellor-Pita, Susana; Ortega-de la Puente, Alfonso; de la Cruz-Echeandía, Marina; Moreno-Torres, Víctor (BMC Rheumatology, 2025)
      Background The higher mortality rates in patients with Systemic sclerosis (SSc) are related to SSc activity, cardiovascular disease, and neoplasms, among other factors. Our objective was to assess the impact of solid ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja