• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 8, nº 7, september 2024
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 8, nº 7, september 2024
    • Ver ítem

    Enhancing Tennis Serve Scoring Efficiency: An AI Deep Learning Approach

    Autor: 
    Liu, Jing-Wei
    Fecha: 
    07/2024
    Palabra clave: 
    deep learning; internet of things; markerless motion capture; notational analysis; tennis techniques and tactics; video analysis; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Citación: 
    J. W. Liu. Enhancing Tennis Serve Scoring Efficiency: An AI Deep Learning Approach, International Journal of Interactive Multimedia and Artificial Intelligence, (2024), http://dx.doi.org/10.9781/ijimai.2024.07.003
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/17174
    DOI: 
    http://dx.doi.org/10.9781/ijimai.2024.07.003
    Open Access
    Resumen:
    The playing field of a tennis competition is a dynamic and complex formative environment given the following preliminary knowledge: (a) the basic technical, tactical, situational, and special types of shots used by the opponent; (b) the hitting area of the tennis player; (c) the place of service; (d) the ball drop position; and (d) batting efficiency and other related information that may improve the chances of victory. In this study, we propose an AI classification model for tennis serve scores. Using a deep learning algorithm, the model automatically tracks and classifies the serve scores of professional tennis players from video data. We first defined the players’ techniques, volleys, and placements of strokes and serves. Subsequently, we defined the referee's tennis terms and the voice in deciding on a serve score. Finally, we developed a deep learning model to automatically classify the serving position, landing position, and use of tennis techniques. The methodology was applied in the context of 10 matches played by Roger Federer and Rafael Nadal. The proposed deep learning algorithm achieved a 98.27% accuracy in the automatic classification of serve scores, revealing that Nadal outscored Federer by 2.1% in terms of serve-scoring efficiency. These results are expected to facilitate the automatic comparison and classification of shots in future studies, enabling coaches to adjust tactics in a timely manner and thereby improve the chances of winning.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Enhancing Tennis Serve Scoring Efficiency.pdf
    Tamaño: 591.4Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 7, september 2024

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    134
    199
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    66
    271

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • The Human Motion Behavior Recognition by Deep Learning Approach and the Internet of Things 

      Li, Hui; Liu, Huayang; Zhao, Wei; Liu, Hao (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 07/2024)
      This paper is dedicated to exploring the practical implementation of deep learning and Internet of Things (IoT) technology within systems designed for recognizing human motion behavior. It places a particular emphasis on ...
    • Research on Brain and Mind Inspired Intelligence 

      Liu, Yang; Wei, Jianshe (International Journal of Interactive Multimedia and Artificial Intelligence, 12/2023)
      To address the problems of scientific theory, common technology and engineering application of multimedia and multimodal information computing, this paper is focused on the theoretical model, algorithm framework, and system ...
    • Inadequate dataset learning for major depressive disorder MRI semantic classification 

      Liu, Jie; Dey, Nilanjan; González-Crespo, Rubén ; Shi, Fuqian; Liu, Chanjuan (IET Image Processing, 2022)
      Predicting patients with major depression (MDD) is currently a difficult task. Magnetic resonance imaging (MRI) data analysis may provide insight into individual patient responses, allowing for more customized treatment ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja