Mostrar el registro sencillo del ítem

dc.contributor.authorLiu, Jing-Wei
dc.date2024-07
dc.date.accessioned2024-08-07T09:57:58Z
dc.date.available2024-08-07T09:57:58Z
dc.identifier.citationJ. W. Liu. Enhancing Tennis Serve Scoring Efficiency: An AI Deep Learning Approach, International Journal of Interactive Multimedia and Artificial Intelligence, (2024), http://dx.doi.org/10.9781/ijimai.2024.07.003es_ES
dc.identifier.urihttps://reunir.unir.net/handle/123456789/17174
dc.description.abstractThe playing field of a tennis competition is a dynamic and complex formative environment given the following preliminary knowledge: (a) the basic technical, tactical, situational, and special types of shots used by the opponent; (b) the hitting area of the tennis player; (c) the place of service; (d) the ball drop position; and (d) batting efficiency and other related information that may improve the chances of victory. In this study, we propose an AI classification model for tennis serve scores. Using a deep learning algorithm, the model automatically tracks and classifies the serve scores of professional tennis players from video data. We first defined the players’ techniques, volleys, and placements of strokes and serves. Subsequently, we defined the referee's tennis terms and the voice in deciding on a serve score. Finally, we developed a deep learning model to automatically classify the serving position, landing position, and use of tennis techniques. The methodology was applied in the context of 10 matches played by Roger Federer and Rafael Nadal. The proposed deep learning algorithm achieved a 98.27% accuracy in the automatic classification of serve scores, revealing that Nadal outscored Federer by 2.1% in terms of serve-scoring efficiency. These results are expected to facilitate the automatic comparison and classification of shots in future studies, enabling coaches to adjust tactics in a timely manner and thereby improve the chances of winning.es_ES
dc.language.isospaes_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;In Press
dc.rightsopenAccesses_ES
dc.subjectdeep learninges_ES
dc.subjectinternet of thingses_ES
dc.subjectmarkerless motion capturees_ES
dc.subjectnotational analysises_ES
dc.subjecttennis techniques and tacticses_ES
dc.subjectvideo analysises_ES
dc.subjectIJIMAIes_ES
dc.titleEnhancing Tennis Serve Scoring Efficiency: An AI Deep Learning Approaches_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://dx.doi.org/10.9781/ijimai.2024.07.003


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem