• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem

    TKU-PSO: An Efficient Particle Swarm Optimization Model for Top-K High-Utility Itemset Mining

    Autor: 
    Carstensen, Simen
    ;
    Chun-Wei Lin, Jerry
    Fecha: 
    01/2024
    Palabra clave: 
    data mining; evolutionary computation; fitness estimation; particle swarm optimization; threshold-raising strategy; top-k high-itility itemset; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence
    Citación: 
    S. Carstensen, J. Chun-Wei Lin. TKU-PSO: An Efficient Particle Swarm Optimization Model for Top-k High-Utility Itemset Mining, International Journal of Interactive Multimedia and Artificial Intelligence, (2024), http://dx.doi.org/10.9781/ijimai.2024.01.002
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/16003
    DOI: 
    https://doi.org/10.9781/ijimai.2024.01.002
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3405
    Open Access
    Resumen:
    Top-k high-utility itemset mining (top- HUIM) is a data mining procedure used to identify the most valuable patterns within transactional data. Although many algorithms are proposed for this purpose, they require substantial execution times when the search space is vast. For this reason, several meta-heuristic models have been applied in similar utility mining problems, particularly evolutionary computation (EC). These algorithms are beneficial as they can find optimal solutions without exploring the search space exhaustively. However, there are currently no evolutionary heuristics available for top-k HUIM. This paper addresses this issue by proposing an EC-based particle swarm optimization model for top-k HUIM, which we call TKU-PSO. In addition, we have developed several strategies to relieve the computational complexity throughout the algorithm. First, redundant and unnecessary candidate evaluations are avoided by utilizing explored solutions and estimating itemset utilities. Second, unpromising items are pruned during execution based on a thresholdraising concept we call minimum solution fitness. Finally, the traditional population initialization approach is revised to improve the model’s ability to find optimal solutions in huge search spaces. Our results show that TKU-PSO is faster than state-of-the-art competitors in all datasets tested. Most notably, existing algorithms could not complete certain experiments due to excessive runtimes, whereas our model discovered the correct solutions within seconds. Moreover, TKU-PSO achieved an overall accuracy of 99.8% compared to 16.5% with the current heuristic approach, while memory usage was the smallest in 2/3 of all tests.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ip2024_01_002_1.pdf
    Tamaño: 1.575Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • In Press

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    297
    138
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    304
    142

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • An Ensemble Classifier for Stock Trend Prediction Using Sentence-Level Chinese News Sentiment and Technical Indicators 

      Chen, Chun-Hao; Chen, Po-Yeh; Chun-Wei Lin, Jerry (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2022)
      In the financial market, predicting stock trends based on stock market news is a challenging task, and researchers are devoted to developing forecasting models. From the existing literature, the performance of the forecasting ...
    • Editor's Note 

      Chun-Wei Lin, Jerry; Srivastava, Gautam; Tseng, Vicent S. (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      In today’s world, we have witnessed an onset of multimedia content being uploaded/downloaded and shared through a multitude of platforms both online and offline. In support of this trend, multimedia processing and analyzing ...
    • Guest Editorial: Special Issue on "Current Trends and the Future of Internet of Things (IoT) in Industry and Enterprise" 

      García Díaz, Vicente; Chun-Wei Lin, Jerry; Morente-Molinera, Juan Antonio (Journal of internet technology, 2022)
      The Internet of Things (IoT) has become an inevitable technological trend across various landscapes. Similarly, IoT solutions for industry and enterprise are at the forefront of technological advancement. When combined ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja