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Abstract

Top-k high-utility itemset mining (top-k HUIM) is a data mining procedure used to identify the most valuable 
patterns within transactional data. Although many algorithms are proposed for this purpose, they require 
substantial execution times when the search space is vast. For this reason, several meta-heuristic models 
have been applied in similar utility mining problems, particularly evolutionary computation (EC). These 
algorithms are beneficial as they can find optimal solutions without exploring the search space exhaustively. 
However, there are currently no evolutionary heuristics available for top-k HUIM. This paper addresses this 
issue by proposing an EC-based particle swarm optimization model for top-k HUIM, which we call TKU-PSO. 
In addition, we have developed several strategies to relieve the computational complexity throughout the 
algorithm. First, redundant and unnecessary candidate evaluations are avoided by utilizing explored solutions 
and estimating itemset utilities. Second, unpromising items are pruned during execution based on a threshold-
raising concept we call minimum solution fitness. Finally, the traditional population initialization approach is 
revised to improve the model’s ability to find optimal solutions in huge search spaces. Our results show that 
TKU-PSO is faster than state-of-the-art competitors in all datasets tested. Most notably, existing algorithms 
could not complete certain experiments due to excessive runtimes, whereas our model discovered the correct 
solutions within seconds. Moreover, TKU-PSO achieved an overall accuracy of 99.8% compared to 16.5% with 
the current heuristic approach, while memory usage was the smallest in 2/3 of all tests.
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I.	 Introduction

Data mining is a popular field of research focused on extracting 
interesting patterns from massive datasets. These patterns are 

highly beneficial as they can help reveal and comprehend hidden 
relationships within data. Several distinctive data mining approaches 
exist, each specialized in locating a specific type of pattern.

Frequent itemset mining (FIM) [1] is a subfield within data mining 
for finding item combinations (itemsets) that occur no less than a 
minimum support count, where the support describes the number 
of transactions that contain the itemset. In other words, FIM returns 
the most prevalent patterns in the data. There is a wide variety of 
applications for FIM, such as finding co-occurring words in a text or 
products often bought together in a store. However, the usefulness 
of FIM is limited as it assumes frequency always defines itemset 
importance. Concerning customer purchases, businesses are typically 
interested in the patterns that contribute the most profit, and these 
itemsets are not necessarily among the common purchases. For this 
reason, data mining based on utilities has been proposed.

High-utility itemset mining (HUIM) [2] is an extension of FIM for 
discovering valuable patterns within data. The value of an itemset is 
quantified by a utility, and HUIM algorithms aim to reveal all itemsets 
with utility over a user-specified minimum utility threshold (HUIs). A 
key property of this strategy is that the utility can characterize different 
quality measures of itemsets, e.g., profit, cost, time, or even frequency. 
This way, HUIs can fit a wider variety of analytical problems than 
the frequent patterns produced by FIM. The most common application 
of HUIM is to identify consumer behaviors through market basket 
analysis [3]. However, recent studies have also shown its usefulness in 
problems such as emerging topic detection [4], travel pattern analysis 
[5], and cardiovascular disease detection [6].

Although there has been extensive research on HUIM, the 
algorithms tend to be unintuitive in practice. The required minimum 
utility threshold is challenging to set properly without knowing 
specific data characteristics. Typically, the user has to test multiple 
threshold values to find a reasonable number of patterns, which 
may not be feasible depending on the model’s runtime. Top-k HUIM 
[7] is an approach aimed at solving this by retrieving HUIs without 
using a minimum utility threshold. Instead, the user provides an 
input parameter k, which represents a desired number of HUIs, and 
the algorithm’s objective is to discover the k HUIs with the largest 
utilities in the database. These models are more intuitive as it is easier 
to set k appropriately than the minimum utility threshold. However, 
top-k HUIM is computationally demanding compared to traditional 
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HUIM as the minimum utility threshold is applied to prune the search 
space. Generally, the larger the minimum utility threshold is, the fewer 
candidates the algorithm has to consider. Therefore, the initial search 
space in top-k HUIM is equivalent to HUIM with the minimum utility 
threshold set to zero.

Evolutionary computation (EC) [8] is a collection of meta-
heuristic models utilizing biological principles to explore search 
spaces efficiently. The purpose of EC is to obtain a set of approximate 
solutions by analyzing problems for a limited number of iterations. 
One such method applied to various utility mining and search 
problems is particle swarm optimization (PSO) [9]–[12]. Like other 
EC models, PSO iteratively optimizes a problem by evolving a set of 
candidate solutions regarding a given quality measure. New candidates 
are continuously created by inheriting traits from the best solutions 
in previous generations, which allows the algorithm to find optimal 
values without exploring the search space exhaustively.

This paper proposes a heuristic model based on PSO to find the top-k 
HUIs, called TKU-PSO. To our knowledge, this is the first work on EC 
in top-k HUIM. The main contributions of the paper are listed below:

•	 We formulate the problem of top-k HUIM from the perspective 
of evolutionary computation and particle swarm optimization, 
in which candidate quality is evaluated based on a utility fitness 
function. 

•	 We introduce several new strategies to improve the general 
performance of heuristics in utility mining. First, to enhance the 
model’s ability to find optimal solutions in large search spaces, 
the best 1-itemsets are utilized for better population initialization. 
Second, redundant and unnecessary particle evaluations are 
avoided through fitness estimation and by maintaining previously 
explored candidates. Finally, to reduce the algorithm’s required 
search space, unpromising items are pruned with a threshold-
raising concept called minimum solution fitness. 

•	 We conduct a series of experiments on real- and synthetic data to 
evaluate the performance of the designed model against existing 
top-k HUIM methods. The results show that TKU-PSO outperforms 
the current state-of-the-art approaches in all tested datasets.

The remainder of this paper is organized as follows: Section II 
reviews related works. Section III presents the preliminaries and 
problem statement. Section IV introduces the proposed strategies and 
algorithm. Section V illustrates the model with an example. Section VI 
discusses the results of the conducted experiments. Section VII gives a 
conclusion of the presented work.

II.	 Related Work

This section gives an overview of the exhaustive algorithms 
proposed for HUIM and top-k HUIM before reviewing the heuristic 
alternatives.

A.	High-Utility Itemset Mining
A vital challenge in HUIM is to deal with potentially huge search 

spaces. A database with n distinct items contains 2 n-1 HUI candidates, 
which means naive approaches quickly struggle due to combinatorial 
explosion. In this respect, Liu et al. [13] provided one of the main 
breakthroughs in HUIM with the Two-Phase algorithm. They 
introduced a technique to reduce the number of candidates based on 
transaction-weighted utilities (TWU). If the TWU of an itemset is less 
than the minimum utility threshold, then no superset extension of 
the itemset can be a HUI. This concept is employed during the first 
phase of the algorithm to only generate candidates that satisfy the 
TWU constraint. The second phase then identifies the actual HUIs by 
determining the utility of each candidate. Several other algorithms 

based on the two-phase approach have later been suggested, such 
as IHUP [14], UP-Growth [15], and MU-Growth [16]. They apply 
different tree structures during candidate generation to avoid creating 
itemsets that do not appear in the input database, thus reducing the 
number of necessary evaluations.

Although the two-phase algorithms establish boundaries to the 
search space, they often cannot reduce the number of candidates 
sufficiently. In addition, the models are subject to computationally 
expensive database scans during the evaluation phase of the 
candidates. In order to alleviate this, Liu and Qu [17] proposed HUI-
Miner, a one-phase approach without candidate generation. They 
developed a utility-list data structure to hold itemset information 
instead of the database. The model performs two database scans to 
construct an initial set of utility-lists before the HUIs are identified 
directly through utility-list join-operations. This way, the algorithm 
bypasses the candidate generation phase, which requires each 
candidate to be cached, potentially leading to memory limitations. 
Moreover, utility-lists enable more efficient evaluations than database 
scans while providing further search space pruning through the 
concept of remaining utility. The approach has later been improved 
with algorithms that reduce the computational cost associated with 
join-operations, some of which are FHM [18], HUP-Miner [19], and 
UBP-Miner [20].

There have also been introduced one-phase approaches that avoid 
irrelevant itemsets, similar to the tree-based, two-phase algorithms. 
The d2HUP [21] algorithm enumerates itemsets as prefix extensions 
by using a hyper-structure database projection, which was shown to 
be generally more efficient than the earlier utility-list-based methods. 
Later, EFIM [22] reduced the cost of database scans with transaction 
merging and database projection techniques. The model utilizes a 
utility-array structure to hold item information, allowing linear time 
utility calculations. In addition, EFIM introduced subtree- and local 
utility upper bounds for further search space reduction.

B.	Top-K High-Utility Itemset Mining
HUIM algorithms perform search space pruning by comparing 

different utility upper bounds to the user-specified minimum utility 
threshold. In top-k HUIM, the minimum utility threshold is initialized 
to zero to overcome the difficulty of selecting an appropriate value. 
These algorithms thus face additional search space challenges and 
rely on threshold-raising strategies to gradually prune unpromising 
candidates. However, the mining- and pruning logic are generally 
adopted from earlier HUIM works. 

Wu et al. [7] were the first to introduce top-k HUIM with the TKU 
algorithm. TKU is a two-phase model that relies on five threshold-
raising strategies to reduce the number of candidates with TWU 
pruning. The first phase of the algorithm maps potential top-k HUIs 
(PKHUIs) to a tree-based structure (UP-Tree) by scanning the input 
data twice. The second phase then determines the actual top-k HUIs 
by traversing the tree and evaluating the utility of the PKHUIs. To 
improve the performance of TKU, Ryang and Yun developed REPT 
[23]. REPT builds upon the same two-phase concept but applies 
more effective threshold-raising and thus generates fewer PKHUIs. 
Although the algorithm is superior to TKU, it requires an additional 
input parameter N , which can be challenging to select.

Due to the two-phase paradigm, TKO and REPT inherits the 
same limitations as their HUIM relatives. Later methods thus 
adopt the superior one-phase strategy. TKO [24] is a HUI-Miner 
extension that combines novel threshold-raising with the utility-list 
structure. The model reveals HUIs without producing candidates 
and performs pruning based on TWU and remaining utility, which 
alleviates the computational burden associated with the earlier two-
phase algorithms.
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Duong et al. [25] then introduced kHMC, which also employs 
the utility-list strategy. In addition, kHMC applies three threshold-
raising techniques to reduce candidates and uses estimated utility co-
occurrence pruning and pruning by coverage to limit the number of 
necessary join-operations on utility-lists. The model was compared to 
TKO and REPT and showed overall better efficiency.

TKEH [26] is an extension of EFIM that utilizes transaction merging 
and database projection techniques to reduce the cost of database 
scans. It employs three threshold-raising strategies and two pruning 
strategies to evade unpromising candidates. Moreover, the utility-list 
is exchanged with the utility-array structure to facilitate linear time 
utility calculations. The model performs particularly well in dense 
databases since transaction merging is effective in scenarios with 
many similar transactions.

To improve the discovery of extremely long patterns, Liu et al. [27] 
developed TONUP. TONUP is a utility list-based, opportunistic pattern 
growth approach that uses five strategies for maintaining shortlisted 
patterns. The model grows the patterns as prefix extensions, shortlists 
patterns with the top k utilities, and prunes the search space with 
novel utility upper bounds. Experiments proved the model to be 
significantly faster than TKU and TKO, as well as several traditional 
HUIM algorithms tuned with an optimal minimum utility threshold.

THUI [28] is an approach that applies a leaf itemset utility structure 
to maintain itemset information and a novel utility lower bound 
estimation method to improve the effectiveness of threshold-raising 
and pruning. Experiments showed the model to be one to three orders 
of magnitude faster than kHMC and TKO, especially on dense datasets.

Finally, top-k HUIM extensions for specialized data environments 
have also been suggested. E.g., PTM [29] proposed a prefix-based 
partitioning strategy to accommodate massive datasets, TKN [30] has 
been introduced for mining data with negative or positive item utilities, 
and TKUS [31] has been proposed for finding patterns in sequential 
data. However, such extensions are outside the scope of this paper.

C.	Heuristic HUIM and Top-K HUIM
Although the algorithms mentioned in the previous section can 

discover the exact top-k HUIs, they cannot efficiently deal with huge 
search spaces, regardless if the approach belongs to the one-phase 
or two-phase paradigm. For this reason, several heuristic algorithms 
have been proposed to tackle the problem of HUIM, particularly 
evolutionary computation (EC). These methods can find optimal 
solutions to large search problems without exploring the entire search 
space, which can be crucial for swift decision-making.

Currently, TKU-CE+ [32] is the only heuristic model available 
for top-k HUIM. However, it does not belong to the EC domain. It 
is an iterative approach based on cross-entropy that generates 
random samples and updates parameters to produce better samples in 
subsequent iterations. The authors also proposed a pruning strategy 
based on a critical utility value (CUV). During the initialization 
process, the model calculates 1-itemsets utilities and sets CUV to 
the k-th largest utility. Unpromising candidates are then pruned 
based on the TWU model from traditional HUIM [13]. In addition, 
they used a sample refinement strategy and smoothing mutation to 
increase sample diversity and mining performance. The algorithm 
demonstrated competitive runtimes and memory usage compared to 
TKU, TKO, and kHMC, although for a limited range of k. As there are 
no other heuristics for top-k HUIM, the rest of this section outlines 
the most relevant works introduced for traditional HUIM. All of these 
approaches utilize the basic TWU model for search space pruning.

Particle swarm optimization (PSO) is an evolutionary-based 
procedure extensively applied in HUIM. PSO maintains a population 
of particles that represent potential solutions. Each particle is assigned 

a fitness value and a velocity vector. The fitness determines the quality 
of the solution, while the velocity decides how the particle evolves. At 
each iteration of the algorithm, the velocity is updated based on two 
historical particles—the personal fittest offspring of the particle (pBest) 
and the all-time fittest particle in the entire population (gBest). After 
the new velocity is acquired, the particle is updated and evaluated, and 
pBest and gBest are redetermined. This way, the population evolves 
towards the optimal solution(s) by modifying particles according to 
the most promising candidates evaluated.

Lin et al.  introduced two PSO models with HUIM-BPSO+ [10] 
and HUIM-BPSO− [33]. The difference between the approaches 
is that HUIM-BPSO+ uses an OR-NOR tree to produce valid item 
combinations and thus avoids evaluating irrelevant solutions.  Song 
and Huang [34] used a similar approach in Bio-HUIF-PSO where a 
promising encoding vector check (PEV-check) is applied to prune 
the candidates that do not appear in any transaction. In addition, 
they improved population diversity by using roulette wheel selection 
to update gBest among the discovered HUIs. The velocity function 
was also replaced with a more effective bit difference strategy. More 
recently, Fang et al. [35] introduced HUIM-IBPSO, which uses several 
adjustment strategies to escape local optima and improve the overall 
convergence and accuracy.

The genetic algorithm (GA) is also a biologically inspired 
technique in which a population of chromosomes evolves towards the 
optimal values using selection, crossover, and mutation operations. 
Kannimuthu and Premalatha [36] introduced two GA models for 
HUIM. Their distinction is whether a minimum utility threshold is 
required or not. However, both methods struggle with premature 
convergence to local optima. To improve this, Zhang et al. introduced 
HUIM-IGA [37], which employs neighborhood exploration, population 
diversity maintenance, individual repair, and elite strategy for better 
search space exploration. Another GA model was proposed with Bio-
HUIF-GA [34], which uses the strategies of Bio-HUIF-PSO to avoid 
irrelevant candidates and boost performance.

Several other types of EC have also been proposed for HUIM. Wu 
et al. [38] used ant colony optimization to map the search space to a 
routing graph and explored it using pheromone rules. Song et al. have 
developed approaches with artificial bee colony algorithm [39], bat 
algorithm [34], and artificial fish swarm algorithm [40]. There are also 
heuristic HUIM techniques not based on EC, such as hill climbing and 
simulated annealing [41].

Altogether, the PSO-based approaches have shown the most promise 
for heuristic discovery of HUIs. The GA models can provide slightly 
higher accuracy but will generally use more time as their update 
procedures require additional computations. The other EC approaches 
tend to struggle with local optima in the iterative stage and thus miss a 
large portion of the available solutions. Based on this, the PSO algorithm 
is an opportune candidate for a heuristic top-k HUIM model.

Table I gives an overview of the current top-k HUIM algorithms 
and their main characteristics.

TABLE I. Overview of Top-K HUIM Algorithms

Algorithm Type Base-algorithm Year
TKU [7] Exact (two-phase) Up-Growth [15] 2012

REPT [23] Exact (two-phase) MU-Growth [16] 2015
TKO [24] Exact (one-phase) HUI-Miner [17] 2015

kHMC [25] Exact (one-phase) FHM [18] 2016
TONUP [27] Exact (one-phase) d2HUP [21] 2018
TKEH [26] Exact (one-phase) EFIM [22] 2019
THUI [28] Exact (one-phase) HUI-Miner [17] 2019

TKU-CE+ [32] Heuristic Cross-entropy [42] 2021
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D.	Limitations of Prior Works
Heuristics are a vital research topic in data mining as they alleviate 

the computational burden associated with analyzing massive datasets. 
However, as the last section shows, there is an abundance of heuristics 
available for HUIM but only one method for top-k HUIM. We also 
argue that all these previous works suffer the same fault—they spend 
too much time evaluating unpromising or redundant solutions. Fitness 
evaluation of a candidate can be extremely costly as the algorithm 
must scan the database to calculate the utility. The total number of 
evaluations thus significantly affects the algorithm’s overall runtime. 
Some studies try to solve this with various termination criteria. 
However, due to the random nature of stochastic optimization, 
convergence is unpredictable and challenging to measure, and the 
model’s accuracy will typically decline.

Another concern with current heuristics is their accuracy in large 
search spaces. As the search space grows, it is increasingly difficult to 
generate suitable initial candidates. If they share few similarities with 
the best solutions, the algorithm tends to fall into local optima before 
generating any appropriate candidates.

The goal of this paper is thus to devise a heuristic top-k HUIM 
model that also mitigates these limitations of previous works.

III.	Preliminaries and Problem Statement

Let the set I = {i1, i2, …, im} contain m distinct items, where ik is a 
unique item such that 1 ≤ k ≤ m. A transactional database D = {T1, T2, 
…, Tn} is a set of n transactions, where each transaction Tq ⊆ I and q 
is a unique transaction identifier (TID) such that 1 ≤ q ≤ n. Moreover, 
each item ik ⊆ D is associated with a profit value, denoted p (ik , D), and 
a purchase quantity for each transaction, denoted q (ik , Tq). The set  
X ⊆ I is called an itemset and is included in transaction Tq if X ⊆ Tq. In 
addition, an itemset with p items is called a p-itemset.

The database shown in Table II is used as a running example in 
this paper. It contains six transactions and six distinct items named 
from A to F, with the corresponding purchase quantities inside the 
parentheses. Table III shows the associated profit value of each item.

TABLE II. A Quantitative Transactional Database

TID Trans (item : quantity) tu
T1 (D:2), (E:3) 16
T2 (A:1), (D:2), (E:2) 17

T3 (A:1), (B:2), (F:1) 6

T4 (C:4), (E:3) 14

T5 (B:3), (C:1), (D:1) 10

T6 (F:9) 9

TABLE III. Profit Table

Item A B C D E F

Unit profit 3 1 2 5 2 1

Definition 1. The utility of an item ik in a transaction Tq is denoted 
u(ik , Tq) and is calculated by (1).

	 (1)

Example 1. The utility of item D in transaction T1 is calculated as  
2 × 5 = 10.

Definition 2. The utility of an itemset X in a transaction Tq is denoted 
u(X, Tq) and is calculated by (2).

	 (2)

Example 2. The utility of itemset (BC) in transaction T5 is calculated as 
3 × 1 + 1 × 2 = 5.

Definition 3. The utility of an itemset X in a database D is denoted 
u(X) and is calculated by (3).

	 (3)

Example 3. The utility of itemset (DE) is calculated as 2 × 5 + 3 × 2 + 
2 × 5 + 2 × 2 = 30.

Definition 4. The TID-set of an itemset X in a database D is denoted T 
ID(X) and is calculated by (4).

	 (4)

Example 4. The TID-set of itemset (D) is {1,2,5}, as (D) occurs in T1, T2 
and T5.

Definition 5. The support count of an itemset X is denoted

sup(X) and is calculated by (5).

	 (5)

Example 5. The support of itemset (D) is calculated as |{1,2,5}| = 3.

Definition 6. The transaction utility of a transaction Tq is denoted 
tu(Tq ) and is calculated by (6).

	 (6)

Example 6. The transaction utility of T5 is calculated as 3 × 1 + 1 × 2 
+ 1 × 5 = 10
Definition 7. The transaction-weighted utility (T W U) of an itemset X 
is denoted T W U (X) and is calculated by (7).

	 (7)

Example 7. The T W U of itemset (E) is calculated as 16 + 17+ 14 = 47.

Definition 8. Given a minimum utility threshold δ, an itemset X is a 
high transaction-weighted utilization itemset (HTWUI) if T W U (X) ≥ δ; 
otherwise, X is a low transaction-weighted utilization itemset (LTWUI). 
In addition, a HTWUI/LTWUI with p items is denoted p-HTWUI/p-
LTWUI.

Example 8. If the minimum utility threshold is set to 20, then itemset 
(B) is a 1-LTWUI since T W U (B) = 16, while itemset (A) is a 1-HTWUI 
as T W U (A) = 23.

Definition 9. Given an minimum utility threshold δ, an itemset X is a 
high-utility itemset (HUI) if u(X) ≥ δ.

Example 9. If the minimum utility threshold is 20, then itemset (D) is 
a HUI as u(D) = 25.
Definition 10. An itemset X is a top-k HUI in a database D if its utility 
is among the k largest in D.

Example 10. If k is 3, then the set of top-k HUIs is {(DE:30), (D:25), 
(ADE:17)}.
Problem statement: Given a desired number of HUIs (k) and a 
database D, the problem of top-k HUIM is to determine the k HUIs 
with the largest utilities in D.

IV.	Proposed Algorithm for Top-K Huim

The proposed TKU-PSO is an iterative approach that prunes the 
search space before a population of particles is generated based on the 
remaining candidates. The top-k HUIs are discovered by evaluating 
and updating the population for a desired number of iterations. We 
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will explain the model in five parts, where the first four describe 
the main developed strategies, and the last section introduces the 
complete model.

A.	Minimum Solution Fitness
To maintain the discovered top-k HUIs, we employ a set with the 

maximum capacity of k (the desired number of HUIs), where each 
solution is sorted in descending order of utility. In other words, the 
solution with the smallest utility is always at the tail of the set. For 
simplicity throughout the paper, we call the utility of the tail-itemset 
the minimum solution fitness. It is defined as follows:

Definition 11. The minimum solution fitness is denoted MSF (H) and 
is calculated by (8).

	 (8)

where H is the set of current top-k HUIs sorted in descending order of 
utility, and k is the desired number of HUIs

The minimum solution fitness is zero until the top-k set reaches its 
capacity, and the model only stores a new solution if its utility exceeds 
the current value. Once the set is full, new solutions replace the tail-
itemset. This way, the minimum solution fitness is a dynamic threshold 
that grows as the algorithm progresses. The following sections explain 
how the model utilizes the minimum solution fitness to avoid fitness 
evaluations and prune candidates.

B.	Population Initialization Strategy
The designed model represents each particle with a bit vector, 

called an encoding vector. The encoding vector length corresponds 
to the number of 1-HTWUI in the database, and each bit describes 
a specific item. If position i of an encoding vector is 1, then item i is 
included in the particle; otherwise, item i is not included. For example, 
assuming all items in Table II are 1-HTWUI, the encoding vector of 
itemset (ABF ) is {1, 1, 0, 0, 0, 1}.

As there is no minimum utility threshold in top-k HUIM, all 
items are initially 1-HTWUI. However, the proposed model removes 
1-LTWUIs by setting the minimum utility threshold to the critical 
utility value (CUV) [32]. CUV is found by calculating all 1-itemset 
utilities and sorting them in descending order of utility. We utilize this 
to initialize the first particles to the 1-itemsets with the largest utilities 
in the database. Previous algorithms initialize the first candidates to 
random itemset sizes between 1 and the number of 1-HTWUIs, which 
means they will generate huge itemsets in databases with many 
1-HTWUIs. As a result, the model likely converges to local optima 
as the best solutions generally are much smaller than the number of 
1-HTWUIs. Initialization with 1-itemsets can thus provide particles 
more similar to the relevant solutions and simplify the evolutionary 
process. In addition, the algorithm’s performance becomes more 
consistent as the first population is selected deterministically rather 
than stochastically.

However, if the population size is larger than the number of 
1-HTWUIs, not all particles can be initialized to a unique 1-itemset. 
In this scenario, we generate the leftover particles with roulette 
wheel selection. Moreover, any particle generated with roulette wheel 
selection is PEV-checked. The PEV-check ensures the particle appears 
in at least one transaction, and the algorithm avoids evaluating 
irrelevant solutions. The implementation details of roulette wheel 
selection and PEV-check are described by Song and Huang [34].

Algorithm 1 shows the population initialization procedure. First, 
the database is scanned once to calculate the utility and TWU of each 
1-itemset (line 1). The minimum utility threshold is then set to the 
k-th largest utility, and each 1-LTWUI is pruned from the database 
(line 2). The 1-HTWUIs are then sorted in descending order of utility 

before the population, pBest, and solutions are initialized to empty 
(lines 3 and 4). Thereafter, the main loop of the procedure starts, where 
pop_size particles are generated (lines 5-18). At each iteration, it is 
checked whether the set of 1-HTWUI is empty (line 6). If not, the first 
1-HTWUI in I is popped, and the particle is initialized to the 1-itemset 
representing this 1-HTWUI. (lines 7 and 8). Otherwise, the particle 
is generated with roulette wheel selection and PEV-checked (lines 
9-12). Next, the created particle is evaluated by calculating its fitness 
(line 13). If the fitness is larger than the minimum solution fitness, 
the particle is put in the set of top-k HUIs as described in Section A 
(lines 14-16). Finally, the particle is placed in the population and its 
corresponding pBest before the next iteration starts (line 17). After the 
entire population is created, the set of top-k HUIs is filled with the 
remaining 1-itemsets until it is full, or there are no more 1-itemsets 
(lines 19-21). This step is performed to increase the minimum solution 
fitness quickly. Finally, the population, pBest, and current top-k HUIs 
are returned, and the procedure terminates (line 22).

Algorithm 1. Population initialization, init()
Input: D: a transactional database, pop_size: the population size, 
            k: the number of desired HUIs
Output: Pop: the first population, pBest: initial offspring,
               H: the current top-k HUIs
1: calculate utility and TWU of each item in D;
2: remove items with TWU less than kth largest utility; 
3: I ← each 1-HTWUI, in descending order of utility; 
4: Pop, pBest, H ← ∅;
5: for i = 1 to pop_size do
6:     if |I| > 0 then
7:          pi ← generate to the first item in I;
8:          remove the first item in I;
9:     else
10:         pi ← generate with roulette wheel selection;
11:         pi ← PEV-check pi;
12:    end if
13:    fit ← calculate fitness of pi using Eq. (9);
14:    if fit > MSF (H) then
15:         insert pi into H;
16:    end if
17:         Popi, pBesti ← pi;
18: end for
19: if pop_size < k and |I| > 0 then
20:         fill H with the remaining 1-itemsets in I;
21: end if
22: Return Pop, pBest, H;

C.	Fitness Evaluation Strategies
The model evaluates the quality of each particle in the population 

with a fitness function.

Definition 12. The fitness of a particle pi is denoted fit(pi) and is 
defined in (9).

	 (9)

where X is the itemset in the encoding vector of pi.

Calculating the utility of an itemset is a costly operation in heuristic 
utility mining algorithms. The time complexity is approximately 
O(s×a), where s is the support of the itemset, and a is the average 
transaction length in the database. Therefore, it is desirable to skip the 
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evaluation of certain unpromising candidates to improve the execution 
time of the model. First, many redundant particles are created during 
the runtime, especially if the algorithm converges. As it is unnecessary 
to assess these solutions repeatedly, the proposed model maintains 
each created particle in a hash set. If the set contains a specific particle, 
the solution is redundant, and the algorithm does not perform the 
fitness evaluation. By doing this, the model quickly terminates when 
it converges as it will primarily create explored solutions.

To further reduce the number of evaluations, we employ a strategy 
to approximate the fitness, which we call fitness estimation.

Definition 13. The maximum utility of an item i in a database D is 
denoted mu(i) and is calculated by (10).

	 (10)

Example 11. The maximum utility of item D in Table II is calculated as 
max{10, 10, 5} = 10
Definition 14. The average utility of an item i in a database D is 
denoted au(i) and is calculated by (11).

	 (11)

Example 12. The average utility of item D in Table II is .

Definition 15. The estimated utility of an itemset X is denoted Est(X) 
and is calculated by (12).

	 (12)

where the deviation σ is defined by (13).

	 (13)

Example 13. Assuming all items in Table II are 1-HTWUI, the deviation 
is calculated as . Thus, the 
estimated utility of itemset (D) is calculated as 3 × (9 + 2) = 33.

The model uses the estimated utility to determine whether 
evaluating a particular particle is worthwhile. It does this by comparing 
the estimate to the fitness of pBest and the minimum solution fitness. 
If the estimate is less than both values, the particle will likely not 
improve the population or be a top-k HUI, and the evaluation is thus 
skipped. Based on Example 13, the model ignores the evaluation of 
itemset (D) if the fitness of pBest and the minimum solution fitness 
is at least 33.

The purpose of the deviation is to avoid underestimates. An 
underestimate occurs when an estimate is less than the particle’s 
actual fitness. Otherwise, the estimate is an overestimate. The model 
keeps track of the number of over- and underestimates during runtime 
and occasionally updates the deviation according to (14).

	 (14)

where the number of over- and underestimates are denoted as o and 
u, respectively.

Example 14. Assuming u = 0 and o = 100. The deviation of Table 
I is updated as 2/2 = 1 , and the estimated utility of itemset (D) is 
calculated as 3×(9+1) = 30.

This way, the model adapts to the data and produces more accurate 
estimates as the deviation is progressively tuned. Each fitness 
estimate is calculated in linear time on the size of the itemset, which 
is negligible compared to the complexity of finding the actual utility. 
The algorithm can thus save significant time when generating many 
low-fitness particles.

D.	Particle Update Strategy
The designed model updates each particle towards pBest and gBest 

using the concept of bit difference [34]. It is defined as follows:

Definition 16. The bit difference of two particles pi and pj , denoted 
BitDiff (pi, pj), is defined as the bitwise-XOR operation on the encoding 
vectors of the particles.

Example 15. Let p1 = {0, 1, 1, 0} and p2 = {1, 0, 1, 0}, then BitDiff (p1, p2) 
= {1, 1, 0, 0}.

In other words, bit difference creates a bit vector of non- identical 
bits between two particles. The update procedure uses bit difference to 
compare a particle to pBest and gBest, and the bits set to 1 in the vector 
represent the items that can change in the particle.

However, if the population only evolves based on the previously 
best solutions, the model typically falls in a local optimum due to 
insufficient diversity. We increase the amount of exploration by 
performing a random modification to the particle after the update 
towards pBest and gBest is complete. The model only executes this 
step if the current particle is a redundant solution. Thus, we avoid 
randomly altering new solutions to previously explored ones. The 
total number of bits bi to change in a particle pi is determined by (15).

	 (15)

where bi1, bi2, and bi3 are defined in (16), (17), and (18), respectively.

	 (16)

	 (17)

	 (18)

where r1 and r2 are random numbers between [0,1], and E is the hash 
set of explored particles. Note that bi3 is determined after bi1 + bi2 
changes are made to the particle.

The update procedure selects bi items and flips their corresponding 
bit in the particle’s encoding vector. However, some 1-HTWUIs can 
have a TWU value less than the minimum solution fitness as it grows 
during runtime. An itemset containing any such 1-HTWUI cannot be 
part of a top-k HUI. Therefore, the algorithm always performs the bit 
clear operation on these items in the particle. Doing this lowers the 
number of potential candidates and thus improves the algorithm’s 
ability to generate the actual solutions.

Algorithm 2. Particle update, update ( )
Input: pi: the particle
Output: p′i : the updated particle
1: b ← calculate bi1 using Eq. (16);
2: I ← b random items set to 1 in BitDiff (pi, pBesti);
3: for each item ∈ I do
4:     pi ← flip or clear item in pi;
5: end for
6: b ← calculate bi2 using Eq. (17);
7: I ← b random items set to 1 in BitDiff (pi, gBesti);
8: for each item ∈ I do
9:     pi ← flip or clear item in pi;
10: end for
11:b ← calculate bi3 using Eq. (18);
12: item ← b random 1-HTWUI; 
13: pi ← flip or clear item in pi; 
14: pi ← PEV-check pi;
15: return p′i;
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Algorithm 2 shows the particle update procedure. First, bi1 of the 
different items between pi and pBesti are randomly selected and put 
into the set I (lines 1 and 2). Each item in I is flipped or cleared in the 
particle, depending on the item’s TWU value and the current minimum 
solution fitness (lines 3-5). Next, the above process repeats for pi and 
gBest (lines 6-10), before bi3 is calculated by identifying whether the 
current particle is redundant (line 11). If it is redundant, one additional 
random item is flipped or cleared in the particle (line 13). Finally, the 
updated particle is PEV-checked and returned (lines 14 and 15).

E.	 TKU-PSO
Algorithm 3 shows the designed TKU-PSO in its entirety. The 

model takes as input a transactional database, the number of desired 
HUIs, the population size, and the number of iterations. First, the 
population, pBest, and the set of top-k HUIs are initialized by calling 
the initialization procedure of Algorithm 1 (line 1). Next, gBest is set 
to the fittest particle, and the set of explored particles is filled with the 
current population (lines 2 and 3). The deviation of the maximum- and 
average utilities are then calculated (line 4) before the main loop of 
the procedure starts, where the population is iteratively updated and 
evaluated (lines -24). At each iteration, the particles are updated using 
Algorithm 2 (line 7). If a new particle is redundant, it is not evaluated 
further, and the procedure continues with the next particle in the 
population (line 8). Otherwise, the particle’s fitness is estimated to 
determine if evaluation should proceed (lines 9 and 10). The particle’s 
exact fitness is only found if the estimate is greater than the fitness 
of pBest or the current minimum solution fitness (lines 11 and 12). If 
the fitness is greater than the minimum solution fitness, the particle 
is a new top-k HUI and is inserted into the solution set as described in 

Section A (lines 13-15). Then, pBest and gBest are updated accordingly 
(lines 16 and 17), and the particle is marked as explored (line 19). When 
the entire population is updated and evaluated, gBest is reselected to 
one of the current top-k HUIs using roulette wheel selection (line 
22). This step is not performed if gBest was updated naturally during 
the current iteration. The deviation is then updated according to the 
number of over- and underestimates before the next iteration starts 
(line 23). Finally, when all iterations are complete, the set of top-k 
HUIs is returned, and the algorithm terminates (line 25).

V.	 An Illustrated Example

This section demonstrates the process of the designed model on the 
database in Table II. The population size and k (the number of desired 
HUIs) are 3 and 2, respectively.

First, we find the TWU {A:23, B:16, C:24, D:43, E:47, F:15} and utility 
{A:6, B:5, C:10, D:25, E:16, F:10} of each 1-itemset. The minimum utility 
threshold is then set to the k-th largest utility, which is 16. Based on 
this, item F is pruned from the database since its TWU is less than the 
minimum utility threshold. The set of 1-HTWUIs is thus {A, B, C, D, E}. 
As the population size is less than the number of 1-HTWUIs, each 
particle is initialized to the 1-itemsets with the greatest utilities. Table 
IV shows the initial population.

TABLE IV. The Initial Particles in the Population

Particle A B C D E
P1 0 0 0 1 0
P2 0 0 0 0 1
P3 0 0 1 0 0

The fittest particles are placed in the set of top-k HUIs {D:25, E:16}, 
and the minimum solution fitness changes to the tail-itemset’s utility 
(16). Next, pBest is initialized as a copy of the population and gBest is 
set to P1. Before the update procedure starts, each current particle is 
marked as explored.

The update of P2 with r1 = 0.7 and r2 = 0.5 goes as follows:  First,  
BitDiff (P2, pBest2) is calculated to {0,0,0,0,0} and b21 = ⌊0.7 × 0⌋, which 
is 0. Therefore, no items change in P2. Next, BitDiff (P2, gBest) is 
calculated to {0, 0, 0, 1, 1} and b22 = ⌊0.5 × 2⌋, which is 1. As a result, 
one non-identical bit between P2 and gBest must change, either the bit 
representing item D or E. Assuming item D is selected, its bit is flipped 
because the TWU of D (43) is larger than the minimum solution fitness 
(16), and P2 becomes {0, 0, 0, 1, 1}. P2 is not a redundant solution, and b23 
is thus 0. The update is then complete as this encoding vector is a PEV.

Suppose the updated population is {P1: {0, 0, 0, 0, 1}, P2: {0, 0, 0, 
1, 1}, P3: {0, 1, 1, 0, 0}}. Consequently, P1 is not evaluated because it 
was explored in the last population.  The maximum utilities of the 
1-HTWUI are {A:3, B:3, C:8, D:10, E:6}, the average utilities are {A:3, 
B:3, C:5, D:9, E:6}, and the deviation is 1. As a result, the estimated 
fitness of P2 and P3 is 34 and 10, respectively. As the estimate of P3 does 
not exceed the minimum solution fitness (16) or the fitness of pBest3 
(10), its fitness evaluation is skipped. The fitness of P2 is 30, which is 
greater than the minimum solution fitness. The top-k HUIs are thus 
updated to {DE:30, D:25}, and the new minimum solution fitness is 
25. In addition, pBest2 and gBest change to P2. At last, the population is 
put in the set of explored particles, and the next iteration begins. After 
the algorithm terminates, the discovered top-k HUIs are (DE) and (D).

VI.	Experimental Results

This section evaluates the performance of the designed TKU-PSO 
against THUI, TKO, and TKU-CE+. The authors of TKO provided a 
significantly improved version of the basic TKO algorithm. We call 

Algorithm 3 Proposed TKU-PSO Algorithm
Input: D: a transactional database, k: the desired number of HUIs,  
            pop_size: the population size, iter: the number of iterations.
Output: H: set of top-k HUIs
1: Pop, pBest, H ← init(D, pop_size, k);
2: gBest ← the fittest particle in Pop;
3: E ← Pop;
4: σ ← calc. using Eq. (13);
5: for i = 1 to iter do
6:     for j = 1 to pop_size do
7:          Popj ← update(Popj );
8:          if Popj ∉ E then
9:               X ← the itemset in Popj ;
10:             est ← estimate the utility of X using Eq. (12); 
11:             if est > MSF (H) or est > fit(pBestj) then
12:                  fit ← calc. fitness of Popj using Eq. (9);
13:                  if fit > MSF (H) then
14:                       insert Popj into H;
15:                  end if
16:                  pBestj ← fittest of Popj and pBestj ;
17:                  gBest ← fittest of Popj and gBest;
18:             end if
19:             E ← E ∪ Popj ;
20:         end if
21:    end for
22:    gBest ← update with roulette wheel selection;
23:    σ ← update using Eq. (14);
24: end for
25: return H;
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this version TKO+ throughout the experiments. The source code of 
THUI was sent to us by the author while we downloaded TKU-CE+ 
from the SPMF data mining library [43]. The source code for TKU-
PSO is available at GitHub1. All the compared algorithms are written 
in Java and were executed with a heap size of 2 GB on JDK 17.0.1. We 
performed the experiments on a 64-bit Windows 10 computer with a 
Ryzen 5 5600x CPU and 16 GB of 3200 MHz CL 16 RAM.

Table V shows the characteristics of the datasets used in the 
comparisons. They are a mixture of real and synthetic data downloaded 
from SPMF. We have categorized each database as dense or sparse 
based on the ratio of the average transaction length to the number of 
distinct items in the database. Generally, sparse databases have more 
diverse transactions.

TABLE V. Database Characteristics

Dataset #Items #Trans Avg.Trans.Len. Type
Chainstore 46,086 1,112,949 7.23 Sparse
Chess 75 3,196 37 Dense
Connect 129 67,557 43 Dense
Kosarak 41,270 990,002 8.1 Sparse
Mushroom 119 8,416 23 Dense
Pumsb 2,113 49,046 74 Sparse

1  https://github.com/Simencar/TKU-PSO

In all the tests, the proposed model is set to 10,000 iterations with 
a population size of 20. The iterations and sample size in TKU-CE+ 
are 2,000, and the quantile parameter is 0.2, as suggested by the 
authors. We used a lower iteration number for TKU-CE+ because it 
is unclear how the sample size compares to the population size of 
TKU-PSO. Only a proportion of the total samples are updated each 
iteration. In addition, TKU-CE+ uses a termination criterion that stops 
the execution prematurely if it determines it has converged, and the 
algorithm rarely completes all iterations. Our model always performs 
the specified 10,000 iterations. For these reasons, the tested input 
parameters are fair.

A.	Runtime
First, we compare the runtimes of the algorithms on the six datasets 

with various values of k. Fig. 1 shows the results.

Fig. 1(a) displays the comparison for Chainstore, where TKU-PSO 
and THUI used a similar amount of time for small values of k, but our 
model was up to 22 times faster as k increased. The heuristic TKU-
CE+ was up to 59 times slower than TKU-PSO in Chainstore. It also 
terminated in less than 20 iterations on all tests. TKO+ is not included 
in Fig. 1(a) as it ran out of memory.

The results in the dense databases Chess and Connect are almost 
identical to each other, Fig. 1(b-c). Our model was the fastest for all 
values of k, followed by THUI. Then, TKO+ was quicker than TKU-

Fig. 1. The runtimes of the compared algorithms.
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CE+ when k was less than 100, while they swapped places for higher 
numbers of HUIs.

Fig. 1(d) demonstrates a clear advantage of the heuristic models 
in Kosarak. When k was 150 and 200, THUI and TKO+ could not 
finish due to the search space size. We ran THUI for over 14 hours 
without getting a result, while TKO+ was stopped after 3 hours. 
Although TKU-CE+ could complete the tests on Kosarak, it repeatedly 
terminated after the first iteration and was still up to 64 times slower 
than TKU-PSO. In addition, our model outperformed THUI and TKO+ 
for smaller values of k.

The Mushroom dataset also shows that TKU-PSO was the most 
efficient model, closely followed by THUI, Fig. 1(e). TKU-CE+ was 
at worst 282 times slower than TKU-PSO, while the runtime also 
fluctuated due to the unpredictability of the termination criterion.

Finally, Fig. 1(e) shows that TKU-PSO was much faster than the 
other approaches in Pumsb. THUI, TKU-CE+, and TKO+ were up to 
63, 141, and 390 times slower, respectively. This was the only dataset 
where TKU-CE+ could finish quicker than THUI, but the runtime was 
inconsistent, like on Mushroom.

Overall, our model achieved the best results in terms of runtime. 
TKU-CE+ is slower in all tests while also performing fewer iterations. 
THUI is generally the closest to our model, but it cannot deal with 
colossal search spaces, as seen on Kosarak. Kosarak has many candidates 
with similar utility, and the threshold-raising pruning of THUI thus 
becomes ineffective. The main contributions to the speed of TKU-PSO 
are the strategies for redundant particles and fitness estimation, which 
reduces the number of necessary particle evaluations. The dynamic 
minimum solution fitness can also improve the runtime of the model. 
During particle update, we avoid 1-HTWUIs with TWU less than the 
minimum solution fitness. Thus, the algorithm converges quicker to 
the point where it creates primarily redundant solutions, which are 
not evaluated.

B.	Accuracy
The heuristic models cannot guarantee the discovery of the correct 

patterns before termination. Therefore, some of the found itemsets 
may not correspond with the actual top-k HUIs in the database. This 
section compares the percentage of correct top-k HUIs between TKU-
PSO and TKU-CE+. In addition, we test the proposed model without 
the new population initialization strategy. This model is called TKU-
PSO- and uses the traditional roulette wheel selection approach. 
We obtained the accuracy by comparing the results of the heuristic 
algorithms with the output of THUI. On Kosarak, the exact patterns 
were retrieved with the threshold-based EFIM [22] as THUI and TKO+ 
could not finish for large k. The accuracy was measured with the 
following formula:

	 (19)

where c is the number of correct top-k HUIs discovered by the heuristic 
algorithm, and k is the desired number of HUIs.

Table VI shows that the proposed TKU-PSO found significantly 
more correct top-k HUIs than TKU-CE+. In Kosarak, Mushroom, and 
Pumsb, the accuracy of our model was always 100%, while TKU-CE+ 
missed nearly all relevant patterns. In Chess and Connect, TKU-CE+ 
found the actual top-k HUIs for k up to 10, but the accuracy gradually 
fell to 22.5% and 20.1% as k increased. In contrast, TKU-PSO returned 
one incorrect itemset when k was 2,000 and maintained 100% accuracy 
in the other tests. In Chainstore, the proposed model performed slightly 
worse than in the other databases but still provided an accuracy of 96% 
or more. TKU-CE+ found the correct HUI at the smallest k but missed 
all relevant itemsets for k above 25.

TABLE VI. The Accuracy of TKU-PSO, TKU-PSO- and TKU- CE+ 
Compared

Chainstore

k 1 10 25 100 250 500

TKU-PSO 100 % 100 % 100 % 99 % 98 % 96 %

TKU-CE+ 100 % 50 % 24 % 0 % 0 % 0 %

TKU-PSO- 100 % 100 % 100 % 98 % 93.6 % 88.8 %

Chess

k 1 10 100 500 1,000 2,000

TKU-PSO 100 % 100 % 100 % 100 % 100 % 99.9 %

TKU-CE+ 100 % 100 % 90 % 51.6 % 34 % 22.5 %

TKU-PSO- 100 % 100 % 100 % 100 % 100 % 99.9 %

Connect

k 1 10 100 500 1,000 2,000

TKU-PSO 100 % 100 % 100 % 100 % 100 % 99.9 %

TKU-CE+ 100 % 100 % 80 % 39.8 % 30 % 20.1 %

TKU-PSO- 100 % 100 % 100 % 100 % 100 % 99.9 %

Kosarak

k 1 10 50 100 150 200

TKU-PSO 100 % 100 % 100 % 100 % 100 % 100 %

TKU-CE+ 100 % 0 % 0 % 0 % 0 % 0 %

TKU-PSO- 100 % 0 % 0 % 0 % 0 % 0 %

Mushroom

k 1 10 100 500 1,000 2,000

TKU-PSO 100 % 100 % 100 % 100 % 100 % 100 %

TKU-CE+ 0 % 0 % 0 % 0 % 0.01 % 0.01 %

TKU-PSO- 100 % 100 % 100 % 100 % 100 % 100 %

Pumsb

k 1 10 50 100 250 500

TKU-PSO 100 % 100 % 100 % 100 % 100 % 100 %

TKU-CE+ 0 % 0 % 0 % 0 % 0 % 0 %

TKU-PSO- 100 % 100 % 0 % 0 % 0 % 0 %

Altogether, TKU-PSO and TKU-CE+ discovered 13,113 and 2,165 
correct top-k HUIs, respectively, corresponding to an overall accuracy 
of 99.8% and 16.5%. In other words, our model outperforms TKU-CE+ 
by a wide margin in these experiments. TKU-PSO can consistently 
find the relevant itemsets even if the search space is huge. The Kosarak 
results demonstrate this as the correct solutions were returned within 
10 seconds, while the non-heuristic algorithms were unable to finish 
in any reasonable amount of time, Fig. 1(d). The main contributor 
to this is the proposed population initialization strategy. TKU-PSO 
has better accuracy than TKU-PSO- in all the sparse databases. These 
databases have massive numbers of 1-HTWUIs when k is large, but 
their best itemsets are relatively small in comparison. Therefore, it is 
advantageous to avoid initialization with roulette wheel selection as 
it will create too big particles and lead the model to a local optimum. 
TKU-PSO- discovered most of the correct solutions on Chainstore 
due to the PEV-check reducing the particle sizes. Nonetheless, the 
new population initialization strategy always provided higher or 
identical accuracy.

C.	Memory
Finally, we compare the maximum memory usage of each algorithm 

on the same datasets and k as in the previous experiments. THUI and 
TKO+ are missing from some graphs for the reasons stated in Section 
A. The memory was measured using the native Java Runtime class. 
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According to the results in Fig. 2, TKU-PSO used the least memory 
on Chess, Connect, Mushroom and Pumsb, while THUI was most 
efficient on Chainstore and Kosarak. This is primarily caused by the 
database size and the algorithm’s strategy for holding item information. 
The heuristic models store the pruned database on the heap while 
THUI and TKO+ construct utility-list variations. Generally, the utility-
list approach is more efficient when the database is sparse and large, 
as seen on the highest k in Fig. 2(a)(d). However, our model used less 
memory for the smallest k in Chainstore and Kosarak because pruning 
reduced the database size considerably. As k increases, pruning is less 
effective, and memory requirements grow. TKO+ does not perform the 
initial pruning used by the other models.  For this reason, it ran out of 
memory in Chainstore and performed the worst in Kosarak.

Comparing the heuristic models, TKU-PSO used overall less 
memory than TKU-CE+ in Fig. 2(b-f). On Chainstore, our model 
generates a high number of unique candidates due to the size of the 
search space. The memory usage then increases as the algorithm 
stores all explored particles. This does not happen to the same extent 
on the similar-sized Kosarak as the model converges early, and overall 
fewer candidates are examined.

Altogether, TKU-PSO was the most memory-efficient algorithm. 
The utility-list of THUI could use less memory in extremely sparse 
databases but was outperformed in other scenarios.

VII.	Conclusion

This paper proposed TKU-PSO, a heuristic model based on particle 
swarm optimization for discovering top-k high-utility itemsets. TKU-
PSO introduces several efficient strategies that are fundamental to 
the model’s performance. First, we effectively reduced the number 
of particle evaluations through fitness estimation and by utilizing 
explored candidates. Second, we introduced the concept of minimum 
solution fitness, which is employed in several stages of the algorithm 
to prune unpromising candidates. Finally, we revised the traditional 
population initialization and thus improved the model’s ability to find 
optimal solutions in large search spaces. The experimental results 
show that our approach is superior in all tested datasets regarding 
execution time and accuracy. Most notably, THUI and TKO+ could 
not complete certain tests due to excessive runtimes, while TKU-PSO 
used less than 10 seconds to discover the correct solutions. In the 
other experiments, TKU-PSO was up to 63, 282, and 390 times faster 
than THUI, TKU-CE+, and TKO+, respectively. In addition, our model 
achieved an overall accuracy of 99.8% compared to 16.5% with TKU-
CE+, and memory usage was the smallest on 4 of 6 datasets.

Although the proposed algorithm displays promising results, 
there are several opportunities for improving mining performance. 
Currently, the limiting factor to the speed of heuristics is the time 

Fig. 2. The memory usage of the compared algorithms.
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required for candidate evaluations. Future work should thus focus on 
strategies that can reduce this cost, e.g., by omitting certain evaluations 
as proposed in this paper or designing a database projection that 
can be more efficiently scanned. Another possibility is to introduce 
parallel execution in the iterative stage of the algorithm such that it 
can perform concurrent evaluations. Regarding accuracy, we have 
demonstrated that population initialization can significantly impact 
the algorithm’s ability to discover the correct solutions. Investigating 
whether this process can be further enhanced is thus an important 
topic to explore. Finally, the developed framework can also be adopted 
by other evolutionary techniques and extended for different utility 
mining problems.
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