• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 3, march 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 3, march 2022
    • Ver ítem

    An Ensemble Classifier for Stock Trend Prediction Using Sentence-Level Chinese News Sentiment and Technical Indicators

    Autor: 
    Chen, Chun-Hao
    ;
    Chen, Po-Yeh
    ;
    Chun-Wei Lin, Jerry
    Fecha: 
    03/2022
    Palabra clave: 
    news; sentiment analysis; trend prediction; support vector machine; technique indicators; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13138
    DOI: 
    https://doi.org/10.9781/ijimai.2022.02.004
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3105
    Open Access
    Resumen:
    In the financial market, predicting stock trends based on stock market news is a challenging task, and researchers are devoted to developing forecasting models. From the existing literature, the performance of the forecasting model is better when news sentiment and technical analysis are considered than when only one of them is used. However, analyzing news sentiment for trend forecasting is a difficult task, especially for Chinese news, because it is unstructured data and extracting the most important features is difficult. Moreover, positive or negative news does not always affect stock prices in a certain way. Therefore, in this paper, we propose an approach to build an ensemble classifier using sentiment in Chinese news at sentence level and technical indicators to predict stock trends. In the training stages, we first divide each news item into a set of sentences. TextRank and word2vec are then used to generate a predefined number of key sentences. The sentiment scores of these key sentences are computed using the given financial lexicon. The sentiment values of the key phrases, the three values of the technical indicators and the stock trend label are merged as a training instance. Based on the sentiment values of the key sets, the corpora are divided into positive and negative news datasets. The two datasets formed are then used to build positive and negative stock trend prediction models using the support vector machine. To increase the reliability of the prediction model, a third classifier is created using the Bollinger Bands. These three classifiers are combined to form an ensemble classifier. In the testing phase, a voting mechanism is used with the trained ensemble classifier to make the final decision based on the trading signals generated by the three classifiers. Finally, experiments were conducted on five years of news and stock prices of one company to show the effectiveness of the proposed approach, and results show that the accuracy and P / L ratio of the proposed approach are 61% and 4.0821 are better than the existing approach.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai7_3_5.pdf
    Tamaño: 767.6Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 3, march 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    110
    234
    193
    105
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    50
    82
    82
    34

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Editor's Note 

      Chun-Wei Lin, Jerry; Srivastava, Gautam; Tseng, Vicent S. (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      In today’s world, we have witnessed an onset of multimedia content being uploaded/downloaded and shared through a multitude of platforms both online and offline. In support of this trend, multimedia processing and analyzing ...
    • Guest Editorial: Special Issue on "Current Trends and the Future of Internet of Things (IoT) in Industry and Enterprise" 

      García Díaz, Vicente; Chun-Wei Lin, Jerry; Morente-Molinera, Juan Antonio (Journal of internet technology, 2022)
      The Internet of Things (IoT) has become an inevitable technological trend across various landscapes. Similarly, IoT solutions for industry and enterprise are at the forefront of technological advancement. When combined ...
    • An Efficient Bet-GCN Approach for Link Prediction 

      Saxena, Rahul; Pankaj Patil, Spandan; Kumar Verma, Atul; Jadeja, Mahipal; Vyas, Pranshu; Bhateja, Vikrant; Chun-Wei Lin, Jerry (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2023)
      The task of determining whether or not a link will exist between two entities, given the current position of the network, is called link prediction. The study of predicting and analyzing links between entities in a network ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja