Mostrar el registro sencillo del ítem

dc.contributor.authorAmin, Javeria
dc.contributor.authorAlmas Anjum, Muhammad
dc.contributor.authorSharif, Muhammad
dc.contributor.authorKadry, Seifedine
dc.contributor.authorGonzález-Crespo, Rubén
dc.date2023
dc.date.accessioned2023-11-16T07:58:52Z
dc.date.available2023-11-16T07:58:52Z
dc.identifier.citationJ. Amin, M. Almas Anjum, M. Sharif, S. Kadry and R. González Crespo, "Visual Geometry Group based on U-Shaped Model for Liver/Liver Tumor Segmentation," in IEEE Latin America Transactions, vol. 21, no. 4, pp. 557-564, April 2023, doi: 10.1109/TLA.2023.10128927.es_ES
dc.identifier.issn1548-0992
dc.identifier.urihttps://reunir.unir.net/handle/123456789/15585
dc.description.abstractLiver cancer is the primary reason of death around the globe. Manually detecting the infected tissues is a challenging and time-consuming task. The computerized methods help make accurate decisions and therapy processes. The segmentation accuracy might be increased to reduce the loss rate. Semantic segmentation performs a vital role in infected liver region segmentation. This article proposes a method that consists of two major steps; first, the local Laplacian filter is applied to improve the image quality. The second is the proposed semantic segmentation model in which features are extracted to the pre-trained VGG16 model and passed to the U-shaped network. This model consists of 51 layers: input, 23 convolutional, 4 max pooling, 4 transpose convolutional, 4 concatenated, 8 activation, and 7 batch-normalization. The proposed segmentation framework is trained on the selected hyperparameters that reduce the loss rate and increase the segmentation accuracy. The proposed approach more precisely segments the infected liver region. The proposed approach performance is accessed on two datasets such as 3DIRCADB and LiTS17. The proposed framework provides an average dice score of 0.98, which is far better compared to the existing works.es_ES
dc.language.isoenges_ES
dc.publisherIEEE Latin America Transactionses_ES
dc.relation.ispartofseries;vol. 21, nº 4
dc.relation.urihttps://ieeexplore.ieee.org/document/10128927es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectconvolutional neural networkes_ES
dc.subjectdatasetses_ES
dc.subjectliveres_ES
dc.subjectsegmentationes_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleVisual Geometry Group based on U-Shaped Model for Liver/Liver Tumor Segmentationes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1109/TLA.2023.10128927


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem