• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 9, nº 1, diciembre 2024
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 9, nº 1, diciembre 2024
    • Ver ítem

    An Improved Deep Learning Model for Electricity Price Forecasting

    Autor: 
    Iqbal, Rashed
    ;
    Mokhlis, Hazlie
    ;
    Mohd Khairuddin, Anis Salwa
    ;
    Azam Muhammad, Munir
    Fecha: 
    2024
    Palabra clave: 
    intelligent systems; Long Short Term Memory (LSTM); smart grid; time series; forecasting; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/15030
    DOI: 
    https://doi.org/10.9781/ijimai.2023.06.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3327
    Open Access
    Resumen:
    Accurate electricity price forecasting (EPF) is important for the purpose of bidding strategies and minimizing the risk for market participants in the competitive electricity market. Besides that, EPF becomes critically important for effective planning and efficient operation of a power system due to deregulation of electricity industry. However, accurate EPF is very challenging due to complex nonlinearity in the time series-based electricity prices. Hence, this work proposed two-fold contributions which are (1) effective time series preprocessing module to ensure feasible time-series data is fitted in the deep learning model, and (2) an improved long short-term memory (LSTM) model by incorporating linear scaled hyperbolic tangent (LiSHT) layer in the EPF. In this work, the time series pre-processing module adopted linear trend of the correlated features of electricity price series and the time series are tested by using Augmented Dickey Fuller (ADF) test method. In addition, the time series are transformed using boxcox transformation method in order to satisfy the stationarity property. Then, an improved LSTM prediction module is proposed to forecast electricity prices where LiSHT layer is adopted to optimize the parameters of the heterogeneous LSTM. This study is performed using the Australian electricity market price, load and renewable energy supply data. The experimental results obtained show that the proposed EPF framework performed better compared to previous techniques.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_9_1_14.pdf
    Tamaño: 901.3Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 9, nº 1, diciembre 2024

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    54
    198
    189
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    73
    74
    131

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Genetic Algorithm for Restricted Maximum k-Satisfiability in the Hopfield Network 

      Kasihmuddin, Mohd Shareduwan Bin Mohd; Mansor, Mohd Asyraf Bin; Sathasivam, Saratha (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2016)
      The restricted Maximum k-Satisfiability MAX- kSAT is an enhanced Boolean satisfiability counterpart that has attracted numerous amount of research. Genetic algorithm has been the prominent optimization heuristic algorithm ...
    • Robust Artificial Immune System in the Hopfield network for Maximum k-Satisfiability 

      Bin Mohd Kasihmuddin, Mohd Shareduwan; Bin Mansor, Mohd Asyraf; Sathasivam, Saratha (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2017)
      Artificial Immune System (AIS) algorithm is a novel and vibrant computational paradigm, enthused by the biological immune system. Over the last few years, the artificial immune system has been sprouting to solve numerous ...
    • Satisfiability Logic Analysis Via Radial Basis Function Neural Network with Artificial Bee Colony Algorithm 

      Kasihmuddin, Mohd Shareduwan Bin Mohd; Mansor, Mohd Asyraf Bin; Abdulhabib Alzaeemi, Shehab; Sathasivam, Saratha (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2021)
      Radial Basis Function Neural Network (RBFNN) is a variant of artificial neural network (ANN) paradigm, utilized in a plethora of fields of studies such as engineering, technology and science. 2 Satisfiability (2SAT) ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja