• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 2, june 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 2, june 2023
    • Ver ítem

    Digit Recognition Using Composite Features With Decision Tree Strategy

    Autor: 
    Chen, Chung-Hsing
    ;
    Huang, Ko-Wei
    Fecha: 
    06/2023
    Palabra clave: 
    decision tree; E13B fonts; feature extraction; image classification; multilayer perceptron; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14830
    DOI: 
    https://doi.org/10.9781/ijimai.2022.12.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3228
    Open Access
    Resumen:
    At present, check transactions are one of the most common forms of money transfer in the market. The information for check exchange is printed using magnetic ink character recognition (MICR), widely used in the banking industry, primarily for processing check transactions. However, the magnetic ink card reader is specialized and expensive, resulting in general accounting departments or bookkeepers using manual data registration instead. An organization that deals with parts or corporate services might have to process 300 to 400 checks each day, which would require a considerable amount of labor to perform the registration process. The cost of a single-sided scanner is only 1/10 of the MICR; hence, using image recognition technology is an economical solution. In this study, we aim to use multiple features for character recognition of E13B, comprising ten numbers and four symbols. For the numeric part, we used statistical features such as image density features, geometric features, and simple decision trees for classification. The symbols of E13B are composed of three distinct rectangles, classified according to their size and relative position. Using the same sample set, MLP, LetNet-5, Alexnet, and hybrid CNN-SVM were used to train the numerical part of the artificial intelligence network as the experimental control group to verify the accuracy and speed of the proposed method. The results of this study were used to verify the performance and usability of the proposed method. Our proposed method obtained all test samples correctly, with a recognition rate close to 100%. A prediction time of less than one millisecond per character, with an average value of 0.03 ms, was achieved, over 50 times faster than state-of-the-art methods. The accuracy rate is also better than all comparative state-of-the-art methods. The proposed method was also applied to an embedded device to ensure the CPU would be used for verification instead of a high-end GPU.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_2_10.pdf
    Tamaño: 1.949Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 2, june 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    70
    215
    88
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    33
    65
    35

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • An Ensemble Classifier for Stock Trend Prediction Using Sentence-Level Chinese News Sentiment and Technical Indicators 

      Chen, Chun-Hao; Chen, Po-Yeh; Chun-Wei Lin, Jerry (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2022)
      In the financial market, predicting stock trends based on stock market news is a challenging task, and researchers are devoted to developing forecasting models. From the existing literature, the performance of the forecasting ...
    • Modified YOLOv4-DenseNet Algorithm for Detection of Ventricular Septal Defects in Ultrasound Images 

      Chen, Shih-Hsin; Wang, Chun-Wei; Tai, I-Hsin; Weng, Ken-Pen; Chen, Yi-Hui; Hsieh, Kai-Sheng (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      Doctors conventionally analyzed echocardiographic images for diagnosing congenital heart diseases (CHDs). However, this process is laborious and depends on the experience of the doctors. This study investigated the use of ...
    • The Evolution of Educational Game Designs From Computers to Mobile Devices: A Comprehensive Review 

      Tlili, Ahmed; Essalmi, Fathi; Jemni, Mohamed; Kinshuk; Chen, Nian-Shing; Huang, Ronghuai; Burgos, Daniel (Lecture Notes in Educational Technology, 2020)
      With the rapid growth of mobile technologies, mobile devices have become very popular and have reached a very high spread. Consequently, mobile games have started gaining an increasing attention from researchers and ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja