• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 7, september 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 7, september 2021
    • Ver ítem

    Modified YOLOv4-DenseNet Algorithm for Detection of Ventricular Septal Defects in Ultrasound Images

    Autor: 
    Chen, Shih-Hsin
    ;
    Wang, Chun-Wei
    ;
    Tai, I-Hsin
    ;
    Weng, Ken-Pen
    ;
    Chen, Yi-Hui
    ;
    Hsieh, Kai-Sheng
    Fecha: 
    09/2021
    Palabra clave: 
    ventricular septal defect (VSD); doppler echocardiographic images; object detection; deep learning; YOLOv4; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13000
    DOI: 
    https://doi.org/10.9781/ijimai.2021.06.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2958
    Open Access
    Resumen:
    Doctors conventionally analyzed echocardiographic images for diagnosing congenital heart diseases (CHDs). However, this process is laborious and depends on the experience of the doctors. This study investigated the use of deep learning algorithms for the image detection of the ventricular septal defect (VSD), the most common type. Color Doppler echocardiographic images containing three types of VSDs were tested with color doppler ultrasound medical images. To the best of our knowledge, this study is the first one to solve this object detection problem by using a modified YOLOv4–DenseNet framework. Because some techniques of YOLOv4 are not suitable for echocardiographic object detection, we revised the algorithm for this problem. The results revealed that the YOLOv4–DenseNet outperformed YOLOv4, YOLOv3, YOLOv3–SPP, and YOLOv3–DenseNet in terms of metric mAP-50. The F1-score of YOLOv4-DenseNet and YOLOv3-DenseNet were better than those of others. Hence, the contribution of this study establishes the feasibility of using deep learning for echocardiographic image detection of VSD investigation and a better YOLOv4-DenseNet framework could be employed for the VSD detection.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai6_7_10.pdf
    Tamaño: 2.236Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 7, september 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    43
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    33

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Integration of Genetic Programming and TABU Search Mechanism for Automatic Detection of Magnetic Resonance Imaging in Cervical Spondylosis 

      Juan, Chun-Jung; Wang, Chen-Shu; Lee, Bo-Yi; Chiang, Shang-Yu; Yeh, Chun-Chang; Cho, Der-Yang; Shen, Wu-Chung (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      Cervical spondylosis is a kind of degenerative disease which not only occurs in elder patients. The age distribution of patients is unfortunately decreasing gradually. Magnetic Resonance Imaging (MRI) is the best tool to ...
    • An Ensemble Classifier for Stock Trend Prediction Using Sentence-Level Chinese News Sentiment and Technical Indicators 

      Chen, Chun-Hao; Chen, Po-Yeh; Chun-Wei Lin, Jerry (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2022)
      In the financial market, predicting stock trends based on stock market news is a challenging task, and researchers are devoted to developing forecasting models. From the existing literature, the performance of the forecasting ...
    • A Generalized Wine Quality Prediction Framework by Evolutionary Algorithms 

      Hui-Ye Chiu, Terry; Wu, Chienwen; Chen, Chun-Hao (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      Wine is an exciting and complex product with distinctive qualities that makes it different from other manufactured products. Therefore, the testing approach to determine the quality of wine is complex and diverse. Several ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja