Mostrar el registro sencillo del ítem

dc.contributor.authorChen, Zhongshan
dc.contributor.authorFeng, Xinning
dc.contributor.authorSanjuán Martínez, Óscar
dc.contributor.authorGonzález-Crespo, Rubén
dc.date2022
dc.date.accessioned2023-04-19T15:17:45Z
dc.date.available2023-04-19T15:17:45Z
dc.identifier.citationChen, Z., Feng, X., Martínez, O. S., & Crespo, R. G. (2022). Hybrid Approach Based on Machine Learning for Hand Shape and Key Point’s Estimation. Journal of Interconnection Networks, 22(Supp01), 2141021.es_ES
dc.identifier.issn0219-2659
dc.identifier.urihttps://reunir.unir.net/handle/123456789/14547
dc.description.abstractIn human-computer interaction and virtual truth, hand pose estimation is essential. Public dataset experimental analysis Different biometric shows that a particular system creates low manual estimation errors and has a more significant opportunity for new hand pose estimation activity. Due to the fluctuations, self-occlusion, and specific modulations, the structure of hand photographs is quite tricky. Hence, this paper proposes a Hybrid approach based on machine learning (HABoML) to enhance the current competitiveness, performance experience, experimental hand shape, and key point estimation analysis. In terms of strengthening the ability to make better self-occlusion adjustments and special handshake and poses estimations, the machine learning algorithm is combined with a hybrid approach. The experiment results helped define a set of follow-up experiments for the proposed systems in this field, which had a high efficiency and performance level. The HABoML strategy decreased analysis precision by 9.33% and is a better solution.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Interconnection Networkses_ES
dc.relation.ispartofseries;vol. 22
dc.relation.urihttps://www.worldscientific.com/doi/epdf/10.1142/S0219265921410218es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectestimationes_ES
dc.subjectHABoMLes_ES
dc.subjectHand shapees_ES
dc.subjectmachine learninges_ES
dc.subjectScopuses_ES
dc.subjectEmerginges_ES
dc.titleHybrid Approach Based on Machine Learning for Hand Shape and Key Point's Estimationes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1142/S0219265921410218


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem