• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem

    Use of Data Mining for Intelligent Evaluation of Imputation Methods

    Autor: 
    la Red, David L.
    ;
    Primorac, Carlos R.
    Fecha: 
    03/2023
    Palabra clave: 
    computer science; imputation; data mining; interdisciplinary applications; performance evaluation; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14484
    DOI: 
    https://doi.org/10.9781/ijimai.2023.03.002
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3291
    Open Access
    Resumen:
    In real-world situations, researchers frequently face the difficulty of missing values (MV), i.e., values not observed in a data set. Data imputation techniques allow the estimation of MV using different algorithms, by means of which important data can be imputed for a particular instance. Most of the literature in this field deals with different imputation methods. However, few studies deal with a comparative evaluation of the different methods as to provide more appropriate guidelines for the selection of the method to be applied to impute data for specific situations. The objective of this work is to show a methodology for evaluating the performance of imputation methods by means of new metrics derived from data mining processes, using quality metrics of data mining models. We started from the complete dataset that was amputated with different amputation mechanisms to generate 63 datasets with MV; these were imputed using Median, k-NN, k-Means and Hot-Deck imputation methods. The performance of the imputation methods was evaluated using new metrics derived from quality metrics of the data mining processes, performed with the original full file and with the imputed files. This evaluation is not based on measuring the error when imputing (usual operation), but on considering the similarity of the values of the quality metrics of the data mining processes obtained with the original file and with the imputed files. The results show that –globally considered and according to the new proposed metric, the imputation methods that showed the best performance were k-NN and k-Means. An additional advantage of the proposed methodology is that it provides predictive data mining models that can be used a posteriori.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ip2023_03_002.pdf
    Tamaño: 3.346Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • In Press

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    72
    72
    261
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    38
    48
    58

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Finger Flexor Force Influences Performance in Senior Male Air Pistol Olympic Shooting 

      Mon, Daniel; Zakynthinaki, María S; Cordente, Carlos A; Monroy Anton, Antonio ; Rodríguez Rodríguez, Barbara; López Jiménez, David (PLOS One, 06/2015)
      The ability to stabilize the gun is crucial for performance in Olympic pistol shooting and is thought to be related to the shooters muscular strength. The present study examines the relation between performance and finger ...
    • Music Boundary Detection using Convolutional Neural Networks: A Comparative Analysis of Combined Input Features 

      Hernandez-Olivan, Carlos; Beltran, Jose R.; Diaz-Guerra, David (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)
      The analysis of the structure of musical pieces is a task that remains a challenge for Artificial Intelligence, especially in the field of Deep Learning. It requires prior identification of the structural boundaries of the ...
    • Lifetime Mental Health Problems in Adult Lower Secondary Education: A Student Survey 

      Aznárez-Sanado, Maite; Artuch-Garde, Raquel ; Carrica-Ochoa, Sarah; García-Roda, Carlos; Arellano, Araceli; Ramírez-Castillo, David; Arrondo, Gonzalo (Frontiers in Psychology, 06/07/2020)
      Background/Objective: Adult Lower Secondary Education is an education program for basic qualifications for the labor market. Our study aimed to compare lifetime mental health problems between current Adult Lower Secondary ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja