• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 7, nº 2, december 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 7, nº 2, december 2021
    • Ver ítem

    Music Boundary Detection using Convolutional Neural Networks: A Comparative Analysis of Combined Input Features

    Autor: 
    Hernandez-Olivan, Carlos
    ;
    Beltran, Jose R.
    ;
    Diaz-Guerra, David
    Fecha: 
    12/2021
    Palabra clave: 
    deep learning; convolutional neural network (CNN); music; information retrieval; music information retrieval (MIR); self-similarity matrix (SSM); IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13058
    DOI: 
    https://doi.org/10.9781/ijimai.2021.10.005
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3030
    Open Access
    Resumen:
    The analysis of the structure of musical pieces is a task that remains a challenge for Artificial Intelligence, especially in the field of Deep Learning. It requires prior identification of the structural boundaries of the music pieces, whose structural boundary analysis has recently been studied with unsupervised methods and supervised neural networks trained with human annotations. The supervised neural networks that have been used in previous studies are Convolutional Neural Networks (CNN) that use Mel-Scaled Log-magnitude Spectograms features (MLS), Self-Similarity Matrices (SSM) or Self-Similarity Lag Matrices (SSLM) as inputs. In previously published studies, pre-processing is done in different ways using different distance metrics, and different audio features are used for computing the inputs, so a generalised pre-processing method for calculating model inputs is missing. The objective of this work is to establish a general method to pre-process these inputs by comparing the results obtained by taking the inputs calculated from different pooling strategies, distance metrics and audio characteristics, also taking into account the computing time to obtain them. We also establish the most effective combination of inputs to be delivered to the CNN to provide the most efficient way to extract the boundaries of the structure of the music pieces. With an adequate combination of input matrices and pooling strategies, we obtain an accuracy F1 of 0.411 that outperforms a current work done under the same conditions (same public available dataset for training and testing).
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai7_2_8_0.pdf
    Tamaño: 1.204Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 2, december 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    40
    54
    85
    144
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    19
    19
    122
    46

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Validity and Intra Rater Reliability of a New Device for Tongue Force Measurement 

      Diaz-Saez, Marta Carlota; Beltran-Alacreu, Hector; Gil-Castillo, Javier; Navarro-Fernández, Gonzalo; Cebrian Carretero, Jose Luis; Gil-Martínez, Alfonso (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2023)
      Background. The tongue is made up of multiple muscles both extrinsic and intrinsic. The hyoid, jaw and maxillary complex contain the tongue, which hangs between these structures forming an important biomechanical system. ...
    • (Un)Broken: Lateral violence among hospital nurses, user violence, burnout, and general health: A structural equation modeling analysis 

      Vidal-Alves, Maria Joao; Pina, David; Ruiz-Hernández, José Antonio; Puente-López, Esteban; Paniagua, David; Martínez-Jarreta, Begoña (Frontiers in Medicine, 2022)
      Introduction: Workplace violence is a social problem yet to be solved. Although it is present in virtually all work environments, its prevalence in healthcare settings stands out, being perceived as something inherent to ...
    • Radon Mitigation Applications at the Laboratorio Subterraneo de Canfranc (LSC) 

      Pérez-Pérez, Javier; Amare, Julio Cesar; Bandac, Iulian Catalin; Bayo, Alberto; Borjabad-Sanchez, Silvia; Calvo-Mozota, Jose Maria ; Cid-Barrio, Laura; Hernandez-Antolin, Rebecca; Hernandez-Molinero, Beatriz; Novella, Pau; Pelczar, Krzysztof; Peña-Garay, Carlos; Romeo, Beatriz; Ortiz de Solorzano, Alfonso; Sorel, Michel; Torrent, Jordi; Uson, Alberto; Wojna-Pelczar, Anna; Zuzel, Grzegorz (Universe, 2022)
      The Laboratorio Subterraneo de Canfranc (LSC) is the Spanish national hub for low radioactivity techniques and the associated scientific and technological applications. The concentration of the airborne radon is a major ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja