Mostrar el registro sencillo del ítem

dc.contributor.authorSrivastava, Vishal
dc.contributor.authorSrivastava, Smriti
dc.contributor.authorChaudhary, Gopal
dc.contributor.authorBlanco Valencia, Xiomara Patricia
dc.date2023
dc.date.accessioned2023-04-03T15:50:38Z
dc.date.available2023-04-03T15:50:38Z
dc.identifier.citationSrivastava, V., Srivastava, S., Chaudhary, G., & Blanco Valencia, X. P. (2022). Performance improvement and Lyapunov stability analysis of nonlinear systems using hybrid optimization techniques. Expert Systems, e13140.es_ES
dc.identifier.issn02664720
dc.identifier.urihttps://reunir.unir.net/handle/123456789/14478
dc.description.abstractUsing Hybrid optimization algorithms for nonlinear systems analysis is a novel approach. It is a powerful technique that uses the exploitation ability of one algorithm and the exploration ability of another algorithm, to find the best solution. Literature survey reveals that hybrid algorithms not only show quality response but also give faster convergence of error for nonlinear systems. In this paper, hybrid optimization techniques based proportional integral derivative (PID) controller is used for benchmark problems: Continuous stirred tank reactor (CSTR), Inverted pendulum and blood glucose system. Two recent hybrid algorithms: Particle swarm optimization-Gravitational search algorithm (PSO-GSA) and Particle swarm optimization-Grey wolf algorithm (PSO-GWO) are implemented to control the temperature and concentration of CSTR, pendulum angle of inverted pendulum, glucose concentration and insulin level of blood glucose system. In PID and PSOGWO algorithms, the exploration abilities of GSA and GWO combined with the exploitation ability of PSO have been used. The performance of these algorithms is then compared with individual PSO, GSA, and GWO algorithms proving their superiority. Stability is ensured using the Lyapunov approach while the robustness of the systems is checked using the parameter perturbation technique. Simulation results show substantial improvement in the performance of these systems by using these meta-heuristic hybrid optimization techniques. A comparative analysis of these algorithms has also been done.es_ES
dc.language.isoenges_ES
dc.publisherExpert Systemses_ES
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1111/exsy.13140es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectcontinuous stirred tank reactores_ES
dc.subjectextended Bergman's minimal modeles_ES
dc.subjecthybrid PSOGSAes_ES
dc.subjecthybrid PSOGWOes_ES
dc.subjectinverted pendulumes_ES
dc.subjectLyapunov stability analysises_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titlePerformance improvement and Lyapunov stability analysis of nonlinear systems using hybrid optimization techniqueses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1111/exsy.13140


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem