• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 5, september 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 5, september 2022
    • Ver ítem

    Electromiographic Signal Processing Using Embedded Artificial Intelligence: An Adaptive Filtering Approach

    Autor: 
    Proaño-Guevara, Daniel
    ;
    Blanco Valencia, Xiomara Patricia
    ;
    Rosero-Montalvo, Paul D.
    ;
    Peluffo-Ordóñez, Diego H.
    Fecha: 
    09/2022
    Palabra clave: 
    adaptive filters; artificial intelligence; edge computing; digital signal processor (DSP); signal; data pre-processing; IJIMAI; Scopus; JCR
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13713
    DOI: 
    https://doi.org/10.9781/ijimai.2022.08.009
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3162
    Open Access
    Resumen:
    In recent times, Artificial Intelligence (AI) has become ubiquitous in technological fields, mainly due to its ability to perform computations in distributed systems or the cloud. Nevertheless, for some applications -as the case of EMG signal processing- it may be highly advisable or even mandatory an on-the-edge processing, i.e., an embedded processing methodology. On the other hand, sEMG signals have been traditionally processed using LTI techniques for simplicity in computing. However, making this strong assumption leads to information loss and spurious results. Considering the current advances in silicon technology and increasing computer power, it is possible to process these biosignals with AI-based techniques correctly. This paper presents an embedded-processing-based adaptive filtering system (here termed edge AI) being an outstanding alternative in contrast to a sensor-computer- actuator system and a classical digital signal processor (DSP) device. Specifically, a PYNQ-Z1 embedded system is used. For experimental purposes, three methodologies on similar processing scenarios are compared. The results show that the edge AI methodology is superior to benchmark approaches by reducing the processing time compared to classical DSPs and general standards while maintaining the signal integrity and processing it, considering that the EMG system is not LTI. Likewise, due to the nature of the proposed architecture, handling information exhibits no leakages. Findings suggest that edge computing is suitable for EMG signal processing when an on-device analysis is required.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_7_5_5.pdf
    Tamaño: 2.389Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS
    • vol. 7, nº 5, september 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    32
    91
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    28
    126

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Editor's Note 

      Blanco Valencia, Xiomara Patricia (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)
      The International Journal of Interactive Multimedia and Artificial Intelligence - IJIMAI - provides a space in which scientists and professionals can report about new advances in Artificial Intelligence (AI). On this ...
    • Automated segmentation of leukocyte from hematological images—a study using various CNN schemes 

      Kadry, Seifedine; Rajinikanth, Venkatesan; Taniar, David; Damaševičius, Roberta; Blanco Valencia, Xiomara Patricia (Springer, 2021)
      Medical images play a fundamental role in disease screening, and automated evaluation of these images is widely preferred in hospitals. Recently, Convolutional Neural Network (CNN) supported medical data assessment is ...
    • Semiautomatic Grading of Short Texts for Open Answers in Higher Education 

      de-la-Fuente-Valentín, Luis ; Verdú, Elena ; Padilla-Zea, Natalia ; Villalonga, Claudia; Blanco Valencia, Xiomara Patricia ; Baldiris, Silvia (Communications in Computer and Information Science, 2022)
      Grading student activities in online courses is a time-expensive task, especially with a high number of students in the course. To avoid a bottleneck in the continuous evaluation process, quizzes with multiple choice ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja