• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Analyzing and classifying MRI images using robust mathematical modeling

    Autor: 
    Bhatia, Madhulika
    ;
    Bhatia, Surbhi
    ;
    Hooda, Madhurima
    ;
    Namasudra, Suyel
    ;
    Taniar, David
    Fecha: 
    2022
    Palabra clave: 
    linear model; medical diagnosis; medical image; segmentation; Scopus
    Revista / editorial: 
    Multimedia Tools and Applications
    Citación: 
    Bhatia, M., Bhatia, S., Hooda, M. et al. Analyzing and classifying MRI images using robust mathematical modeling. Multimed Tools Appl 81, 37519–37540 (2022). https://doi.org/10.1007/s11042-022-13505-8
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/14418
    DOI: 
    https://doi.org/10.1007/s11042-022-13505-8
    Dirección web: 
    https://link.springer.com/article/10.1007/s11042-022-13505-8
    Resumen:
    Medical imaging is an exponentially growing field, which consists of a set of tools and techniques used to extract useful information from medical images. Magnetic Resonance Imaging (MRI) is one of the most popular techniques among image modalities. This paper develops a linear model for classifying MRI images into the tumor and non-tumor categories. The proposed algorithm supports automatic extraction of features from brain MRI images, and focuses on extracting grey matter and white matter, so that the unhealthy MRI images can be isolated from the healthy MRI images. This technique takes advantage of preprocessing strategies and various filters for viable extraction and for classifying the brain MRI images. The samples of MRI images are taken from the BRAINIX and Neuroimaging data sources. The results are validated by applying the mathematical equations on 46 patients categorizing into 24 subjects as healthy and the remaining 22 as unhealthy. The novelty lies in formulating a general equation for both groups, which can be further used as a tool in computer-assisted medical systems for classifying patients
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    30
    42
    52
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Improving security of medical big data by using Blockchain technology 

      Sharma, Pratima; Borah, Malaya Dutta; Namasudra, Suyel (Elsevier Ltd, 2021)
      Big data refers to a very large and diverse set of data that grow at exponential rates. In the modern healthcare system, medical big data face many security issues due to the presence of hackers and malicious users. Nowadays, ...
    • A robust drug recall supply chain management system using hyperledger blockchain ecosystem 

      Agrawal, Divyansh; Minocha, Sachin; Namasudra, Suyel ; Gandomi, Amir H. (Elsevier Ltd, 2022)
      Drug recall is a critical issue for manufacturing companies, as a manufacturer might face criticism and severe business downfall due to a defective drug. A defective drug is a highly detrimental issue, as it can cost several ...
    • Introduction to the special section on advances of machine learning in cybersecurity (VSI-mlsec) 

      Namasudra, Suyel; González-Crespo, Rubén ; Kumar, Sathish (Computers and Electrical Engineering, 2022)
      With the rapid advancement of emerging technologies, such as Internet of Things (IoT), cloud computing, and many more, a huge amount of data is generated and processed in daily life. As these technologies are based on the ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja