• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 8, nº 6, june 2024
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 8, nº 6, june 2024
    • Ver ítem

    An Efficient Fake News Detection System Using Contextualized Embeddings and Recurrent Neural Network

    Autor: 
    Ali Reshi, Junaid
    ;
    Ali, Rashid
    Fecha: 
    06/2024
    Palabra clave: 
    contextualized embeddings; deep learning; fake news detection; natural language processing; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Citación: 
    Junaid Ali Reshi, Rashid Ali (2024). "An Efficient Fake News Detection System Using Contextualized Embeddings and Recurrent Neural Network", International Journal of Interactive Multimedia and Artificial Intelligence, vol. 8, issue Regular Issue, no. 6, pp. 38-50. https://doi.org/10.9781/ijimai.2023.02.007
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14339
    DOI: 
    https://doi.org/10.9781/ijimai.2023.02.007
    Open Access
    Resumen:
    Fake news is detrimental for society and individuals. Since the information dissipation through online media is too quick, an efficient system is needed to detect and counter the propagation of fake news on social media. Many studies have been performed in last few years to detect fake news on social media. This study focusses on the efficient detection of fake news on social media, through a Natural Language Processing based approach, using deep learning. For the detection of fake news, textual data have been analyzed in unidirectional way using sequential neural networks, or in bi-directional way using transformer architectures like Bidirectional Encoder Representations from Transformers (BERT). This paper proposes ConFaDe - a deep learning based fake news detection system that utilizes contextual embeddings generated from a transformer-based model. The model uses Masked Language Modelling and Replaced Token Detection in its pre-training to capture contextual and semantic information in the text. The proposed system outperforms the previously set benchmarks for fake news detection; including state-of-the-art approaches on a real-world fake news dataset, when evaluated using a set of standard performance metrics with an accuracy of 99.9 % and F1 macro of 99.9%. In contrast to the existing state-of-the-art model, the proposed system uses 90 percent less network parameters and is 75 percent lesser in size. Consequently, ConFaDe requires fewer hardware resources and less training time, and yet outperforms the existing fake news detection techniques, a step forward in the direction of Green Artificial Intelligence.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: An Efficient Fake News Detection System Using Contextualized Embeddings and Recurrent Neural Network.pdf
    Tamaño: 2.413Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 6, june 2024

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    211
    341
    204
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    266
    346
    139

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • mlCAF: Multi-Level Cross-Domain Semantic Context Fusioning for Behavior Identification 

      Asif Razzaq, Muhammad; Villalonga, Claudia ; Sungyoung, Lee; Akhtar, Usman; Ali, Maqbool; Kim, Eun-Soo; Masood Khattak, Asad; Seung, Hyonwoo; Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Ali Khan, Wajahat (Sensors, 10/2017)
      The emerging research on automatic identification of user’s contexts from the cross-domain environment in ubiquitous and pervasive computing systems has proved to be successful. Monitoring the diversified user’s contexts ...
    • Analyzing the EEG Signals in Order to Estimate the Depth of Anesthesia using Wavelet and Fuzzy Neural Networks 

      Esmaeilpour, Mansour; Mohammadi, Ali Reis Ali (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2016)
      Estimating depth of Anesthesia in patients with the objective to administer the right dosage of drug has always attracted the attention of specialists. To study Anesthesia, researchers analyze brain waves since this is the ...
    • Techniques to Detect DoS and DDoS Attacks and an Introduction of a Mobile Agent System to Enhance it in Cloud Computing 

      Saidi, Abdelali; Bendriss, Elmehdi; Kartit, Ali; El Marraki, Mohamed (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2017)
      Security in cloud computing is the ultimate question that every potential user studies before adopting it. Among the important points that the provider must ensure is that the Cloud will be available anytime the consumer ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja