• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 1, march 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 1, march 2023
    • Ver ítem

    A Spatio-Temporal Attention Graph Convolutional Networks for Sea Surface Temperature Prediction

    Autor: 
    Chen, Desheng
    ;
    Wen, Jiabao
    ;
    Lv, Caiyun
    Fecha: 
    03/2023
    Palabra clave: 
    forecasting; gated recurrent unit; graph convolution network (GCN); sea surface temperature; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14303
    DOI: 
    https://doi.org/10.9781/ijimai.2023.02.011
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3280
    Open Access
    Resumen:
    Sea surface temperature (SST) is an important index to detect ocean changes, predict SST anomalies, and prevent natural disasters caused by abnormal changes, dynamic variation of which have a profound impact on the whole marine ecosystem and the dynamic changes of climate. In order to better capture the dynamic changes of ocean temperature, it’s vitally essential to predict the SST in the future. A new spatio-temporal attention graph convolutional network (STAGCN) for SST prediction was proposed in this paper which can capture spatial dependence and temporal correlation in the way of integrating gated recurrent unit (GRU) model with graph convolutional network (GCN) and introduced attention mechanism. The STAGCN model adopts the GCN model to learn the topological structure between ocean location points for extracting the spatial characteristics from the ocean position nodes network. Besides, capturing temporal correlation by learning dynamic variation of SST time series data, a GRU model is introduced into the STAGCN model to deal with the prediction problem about long time series, the input of which is the SST data with spatial characteristics. To capture the significance of SST information at different times and increase the accuracy of SST forecast, the attention mechanism was used to obtain the spatial and temporal characteristics globally. In this study, the proposed STAGCN model was trained and tested on the East China Sea. Experiments with different prediction lengths show that the model can capture the spatio-temporal correlation of regional-scale sea surface temperature series and almost uniformly outperforms other classical models under different sea areas and different prediction levels, in which the root mean square error is reduced by about 0.2 compared with the LSTM model.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_1_6.pdf
    Tamaño: 3.639Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 1, march 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    124
    184
    168
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    103
    68
    102

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Preface 

      Pang, C.; Chen, G.; Chen, L.; Zhang, B.; Li, Q.; Gao, Y.; Popescu, E.; Hao, T.; Navarro, S.M.B. ; Klamma, R. (Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 2021)
      Preface
    • An Ensemble Classifier for Stock Trend Prediction Using Sentence-Level Chinese News Sentiment and Technical Indicators 

      Chen, Chun-Hao; Chen, Po-Yeh; Chun-Wei Lin, Jerry (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2022)
      In the financial market, predicting stock trends based on stock market news is a challenging task, and researchers are devoted to developing forecasting models. From the existing literature, the performance of the forecasting ...
    • Modified YOLOv4-DenseNet Algorithm for Detection of Ventricular Septal Defects in Ultrasound Images 

      Chen, Shih-Hsin; Wang, Chun-Wei; Tai, I-Hsin; Weng, Ken-Pen; Chen, Yi-Hui; Hsieh, Kai-Sheng (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      Doctors conventionally analyzed echocardiographic images for diagnosing congenital heart diseases (CHDs). However, this process is laborious and depends on the experience of the doctors. This study investigated the use of ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja