• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 1, march 2023
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2023
    • vol. 8, nº 1, march 2023
    • Ver ítem

    COVID-19 Disease Prediction Using Weighted Ensemble Transfer Learning

    Autor: 
    Kumar Roy, Pradeep
    ;
    Singh, Ashish
    Fecha: 
    03/2023
    Palabra clave: 
    convolutional neural network (CNN); coronavirus COVID-19; deep learning; ensemble methods; health; transfer learning; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14294
    DOI: 
    https://doi.org/10.9781/ijimai.2023.02.006
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3268
    Open Access
    Resumen:
    Health experts use advanced technological equipment to find complex diseases and diagnose them. Medical imaging nowadays is popular for detecting abnormalities in human bodies. This research discusses using the Internet of Medical Things in the COVID-19 crisis perspective. COVID-19 disease created an unforgettable remark on human memory. It is something like never happened before, and people do not expect it in the future. Medical experts are continuously working on getting a solution for this deadly disease. This pandemic warns the healthcare system to find an alternative solution to monitor the infected person remotely. Internet of Medical Things can be helpful in a pandemic scenario. This paper suggested a ensemble transfer learning framework predict COVID-19 infection. The model used the weighted transfer learning concept and predicted the COVID- 19 infected people with an F1-score of 0.997 for the best case on the test dataset.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai8_1_2.pdf
    Tamaño: 2.871Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 1, march 2023

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    95
    120
    119
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    92
    35
    39

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Human Activity Recognition in Real-Times Environments using Skeleton Joints 

      Kumar, Ajay; Kumar, Anil; Kumar Singh, Satish; Kala, Rahul (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 2016)
      In this research work, we proposed a most effective noble approach for Human activity recognition in real-time environments. We recognize several distinct dynamic human activity actions using kinect. A 3D skeleton data ...
    • Spiking Activity of a LIF Neuron in Distributed Delay Framework 

      Kumar Choudhary, Saket; Singh, Karan; Kumar Solanki, Vijender (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 2016)
      Evolution of membrane potential and spiking activity for a single leaky integrate-and-fire (LIF) neuron in distributed delay framework (DDF) is investigated. DDF provides a mechanism to incorporate memory element in ...
    • PCHET: An efficient programmable cellular automata based hybrid encryption technique for multi-chat client-server applications 

      Roy, Satyabrata; Gupta, Rohit Kumar; Rawat, Umashankar; Dey, Nilanjan; González-Crespo, Rubén (Journal of Information Security and Applications, 12/2020)
      This paper demonstrates an efficient programmable Cellular Automata (CA) based hybrid encryption technique (PCHET) for chatting applications involving multiple clients who can chat simultaneously with each other. The ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja