• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2016
    • vol. 3, nº 7, june 2016
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2016
    • vol. 3, nº 7, june 2016
    • Ver ítem

    Human Activity Recognition in Real-Times Environments using Skeleton Joints

    Autor: 
    Kumar, Ajay
    ;
    Kumar, Anil
    ;
    Kumar Singh, Satish
    ;
    Kala, Rahul
    Fecha: 
    2016
    Palabra clave: 
    human activity; kinect; skeleton joints; principle component analysis; artificial neural network; gesture recognition; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/11231
    DOI: 
    http://doi.org/10.9781/ijimai.2016.379
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2549
    Open Access
    Resumen:
    In this research work, we proposed a most effective noble approach for Human activity recognition in real-time environments. We recognize several distinct dynamic human activity actions using kinect. A 3D skeleton data is processed from real-time video gesture to sequence of frames and getter skeleton joints (Energy Joints, orientation, rotations of joint angles) from selected setof frames. We are using joint angle and orientations, rotations information from Kinect therefore less computation required. However, after extracting the set of frames we implemented several classification techniques Principal Component Analysis (PCA) with several distance based classifiers and Artificial Neural Network (ANN) respectively with some variants for classify our all different gesture models. However, we conclude that use very less number of frame (10-15%) for train our system efficiently from the entire set of gesture frames. Moreover, after successfully completion of our classification methods we clinch an excellent overall accuracy 94%, 96% and 98% respectively. We finally observe that our proposed system is more useful than comparing to other existing system, therefore our model is best suitable for real-time application such as in video games for player action/gesture recognition.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20163_7_9_pdf_20470.pdf
    Tamaño: 1.315Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 3, nº 7, june 2016

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    30
    44
    63
    98
    53
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    49
    39
    25
    32
    16

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Linear Temporal Logic-based Mission Planning 

      Kumar, Anil; Kala, Rahul (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 2016)
      In this paper, we describe the Linear Temporal Logic-based reactive motion planning. We address the problem of motion planning for mobile robots, wherein the goal specification of planning is given in complex environments. ...
    • An Efficient Bet-GCN Approach for Link Prediction 

      Saxena, Rahul; Pankaj Patil, Spandan; Kumar Verma, Atul; Jadeja, Mahipal; Vyas, Pranshu; Bhateja, Vikrant; Chun-Wei Lin, Jerry (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2023)
      The task of determining whether or not a link will exist between two entities, given the current position of the network, is called link prediction. The study of predicting and analyzing links between entities in a network ...
    • Spiking Activity of a LIF Neuron in Distributed Delay Framework 

      Kumar Choudhary, Saket; Singh, Karan; Kumar Solanki, Vijender (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 2016)
      Evolution of membrane potential and spiking activity for a single leaky integrate-and-fire (LIF) neuron in distributed delay framework (DDF) is investigated. DDF provides a mechanism to incorporate memory element in ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja