Mostrar el registro sencillo del ítem

dc.contributor.authorKumar Roy, Pradeep
dc.contributor.authorSingh, Ashish
dc.date2023-03
dc.date.accessioned2023-03-07T14:15:11Z
dc.date.available2023-03-07T14:15:11Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/14294
dc.description.abstractHealth experts use advanced technological equipment to find complex diseases and diagnose them. Medical imaging nowadays is popular for detecting abnormalities in human bodies. This research discusses using the Internet of Medical Things in the COVID-19 crisis perspective. COVID-19 disease created an unforgettable remark on human memory. It is something like never happened before, and people do not expect it in the future. Medical experts are continuously working on getting a solution for this deadly disease. This pandemic warns the healthcare system to find an alternative solution to monitor the infected person remotely. Internet of Medical Things can be helpful in a pandemic scenario. This paper suggested a ensemble transfer learning framework predict COVID-19 infection. The model used the weighted transfer learning concept and predicted the COVID- 19 infected people with an F1-score of 0.997 for the best case on the test dataset.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 8, nº 1
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/3268es_ES
dc.rightsopenAccesses_ES
dc.subjectconvolutional neural network (CNN)es_ES
dc.subjectcoronavirus COVID-19es_ES
dc.subjectdeep learninges_ES
dc.subjectensemble methodses_ES
dc.subjecthealthes_ES
dc.subjecttransfer learninges_ES
dc.subjectIJIMAIes_ES
dc.titleCOVID-19 Disease Prediction Using Weighted Ensemble Transfer Learninges_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2023.02.006


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem