• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Editors Note

    Autor: 
    Shu, Lei
    ;
    Rodrigues, Joel J.P.C.
    ;
    Cohn, Anthony G.
    ;
    Mao, Qirong
    ;
    Li, Maozhen
    Fecha: 
    09/2022
    Palabra clave: 
    editors note; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13714
    DOI: 
    https://doi.org/10.9781/ijimai.2022.08.010
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3165
    Open Access
    Resumen:
    As the Internet of Things (IoT) further develops and expands to the Internet of Everything (IoE), high-speed multimedia streaming data processing, analysis, and shorter response times are increasingly becoming the demands of today. Driven by the Internet of Things (IoT), a new computing paradigm, Edge computing, is currently developing rapidly. Compared with traditional centralized generalpurpose computing, Edge computing is a distributed architecture. The operations of applications, data and services are moved from the central node of the network to the edge nodes on the network logic for processing. Under this structure, the analysis of data and the generation of knowledge are closer to the source of the data, so it is more suitable for processing. However, with the rapid development of 5G, IoT and other services and scenarios, there are more and more intelligent terminal devices. Multimedia streaming processing in IoT becomes a very prominent problem. To overcome this problem, the adoption of intelligent Edge or Artificial Intelligence (AI) powered Edge computing (Edge-AI) can achieve the goals of lower cost, higher security, lower latency, and ease of management. Recently, many network modeling methods, computing algorithms, and signal processing technologies have been successfully developed and applied to multimedia streaming processing in IoT with Edge Intelligence. A total of 13 papers are presented in this special issue for the purpose of collecting the latest developments and results on this research topic. We divide them into three categories: production and life applications, security, and text and image processing.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_7_5_0.pdf
    Tamaño: 56.54Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    11
    37
    65
    48
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    4
    11
    17
    16

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Editor's Note 

      Shu, Lei; Rodrigues, Joel J.P.C.; Cohn, Anthony G.; Mao, Qirong; Li, Maozhen (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2022)
      As the Internet of Things (IoT) further develops and expands to the Internet of Everything (IoE), high-speed multimedia streaming data processing, analysis, and shorter response times are increasingly becoming the demands ...
    • Discover, Reuse and Share Knowledge on Service Oriented Architectures 

      Soto Carrión, Jesús; Shu, Lei; Garcia Gordo, Elisa (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2011)
      Current Semantic Web frameworks provide a complete infrastructure to manage ontologies schemes easing information retrieval with inference support. Ideally, the use of their frameworks should be transparent and decoupled, ...
    • A Method of the Coverage Ratio of Street Trees Based on Deep Learning 

      Han, Wen; Cao, Lei; Xu, Sheng (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2022)
      The street trees coverage ratio provides reliable data support for urban ecological environment assessment, which plays an important part in the ecological environment index calculation. Aiming at the statistical estimation ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja