Técnicas de inteligencia artificial aplicadas a la planificación de construcción de plantas fotovoltaicas
Autor:
López-Ferreiro, Manuel Ángel
Fecha:
14/07/2022Palabra clave:
Tipo de Ítem:
masterThesis
Resumen:
La generación fotovoltaica es una de las tecnologías clave para alcanzar los retos de
transición energética. Así, en los últimos años se ha observado un incremento en la ejecución
de proyectos de grandes plantas fotovoltaicas. La principal dificultad para cumplir con el plazo
de construcción es la elaboración de una planificación adecuada. Una herramienta que genere
cronogramas de forma automática puede resultar de gran ayuda a la hora de establecer
planificaciones iniciales de referencia. A tal fin, este trabajo compara cinco técnicas de
inteligencia artificial, sobre un conjunto de datos formado por 25 planificaciones. La evaluación
de los resultados obtenidos sobre datos de test demuestra que ANFIS es la técnica que
obtiene mejor rendimiento en todas las métricas de error, si bien conlleva un alto coste
computacional. El modelo así obtenido consigue generar un cronograma completo de
construcción con un error de un 8% sobre la duración total.
Descripción:
Photovoltaic generation is a key technology to meet the challenges of energy transition. Thus,
in recent years there has been an increase in the execution of large photovoltaic plant projects.
The main difficulty in meeting construction deadlines is the elaboration of an adequate
planning. A tool that automatically generates schedules can be of great help to set up an initial
baseline planning. To this end, this work compares five artificial intelligence techniques, on a
data set consisting of 25 schedules. The evaluation of the results obtained on test data shows
that ANFIS is the technique that obtains the best performance in all error metrics, although it
entails a high computational cost. The model thus obtained manages to generate a complete
construction schedule with an error of 8% of the total duration.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
| Año |
| 2012 |
| 2013 |
| 2014 |
| 2015 |
| 2016 |
| 2017 |
| 2018 |
| 2019 |
| 2020 |
| 2021 |
| 2022 |
| 2023 |
| 2024 |
| 2025 |
| Vistas |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 80 |
| 241 |
| 218 |
| 243 |
| Descargas |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 45 |
| 183 |
| 140 |
| 221 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Artificial Intelligent Application in Project Management: An Algorithm Comparison for Solar Plants Planning Construction
López Ferreiro, Manuel Ángel; Gil Ruiz, Jesús; García García, Óscar; de-la-Fuente-Valentín, Luis (Expert Systems, 2025)Construction planning is a critical and complex phase in the deployment of large-scale renewable energy infrastructure. This study applies artificial intelligence techniques to a domain-specific problem that has traditionally ... -
What About NPOs? Identifying Factors in the Intention to Donate: The Role of Brand Identification and Past Behavior
Millán, Ángel; Retamosa-Ferreiro, Marta; Carranza, Rocío (Voluntas, 2024)In this study, the factors that determine the intentions of individuals to donate to nonprofit organizations (NPOs) were analyzed. Based on an extensive review of the academic literature, research hypotheses were proposed ... -
Intelligent Detection and Recovery from Cyberattacks for Small and Medium-Sized Enterprises
Lopez, Miguel Angel; Lombardo, Juan Manuel; López, Mabel; Alba, Carmen María; Velasco, Susana; Braojos, Manuel Alonso; Fuentes-García, Marta (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2020)Cyberattacks threaten continuously computer security in companies. These attacks evolve everyday, being more and more sophisticated and robust. In addition, they take advantage of security breaches in organizations and ...





