• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem

    Multimodal Human Eye Blink Recognition Using Z-score Based Thresholding and Weighted Features

    Autor: 
    Singh Lamba, Puneet
    ;
    Virmani, Deepali
    ;
    Pillai, Manu S.
    ;
    Chaudhary, Gopal
    Fecha: 
    06/2022
    Palabra clave: 
    eye blink; multimodal; Z score threshold; weighted features; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13570
    DOI: 
    https://doi.org/10.9781/ijimai.2021.11.002
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3045
    Open Access
    Resumen:
    A novel real-time multimodal eye blink detection method using an amalgam of five unique weighted features extracted from the circle boundary formed from the eye landmarks is proposed. The five features, namely (Vertical Head Positioning, Orientation Factor, Proportional Ratio, Area of Intersection, and Upper Eyelid Radius), provide imperative gen (z score threshold) accurately predicting the eye status and thus the blinking status. An accurate and precise algorithm employing the five weighted features is proposed to predict eye status (open/close). One state-of-the-art dataset ZJU (eye-blink), is used to measure the performance of the method. Precision, recall, F1-score, and ROC curve measure the proposed method performance qualitatively and quantitatively. Increased accuracy (of around 97.2%) and precision (97.4%) are obtained compared to other existing unimodal approaches. The efficiency of the proposed method is shown to outperform the state-of-the-art methods.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_7_4_9.pdf
    Tamaño: 1.568Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 4, june 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    13
    68
    95
    38
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    32
    45
    36
    13

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Predictive text analysis using eye blinks 

      Chaudhary, Gopal; Lamba, Puneet Singh; Jolly, Harman Singh; Poply, Sakaar; Khari, Manju; Verdú, Elena (Elsevier Ltd, 2021)
      The current work aims to facilitate interaction with others to those with the inability to perform activities requiring motor skills or those who cannot speak. It proposes a modus operandi or a system based on Histogram ...
    • Real-time measurement of the uncertain epidemiological appearances of COVID-19 infections 

      Gupta, Meenu; Jain, Rachna; Taneja, Soham; Chaudhary, Gopal; Khari, Manju; Verdú, Elena (Applied soft computing, 2021)
      Virus diseases are a continued threat to human health in both community and healthcare settings. The current virus disease COVID-19 outbreak raises an unparalleled public health issue for the world at large. Wuhan is the ...
    • Real-time image enhancement for an automatic automobile accident detection through CCTV using deep learning 

      Pillai, Manu S.; Chaudhary, Gopal; Khari, Manju; González-Crespo, Rubén (Springer Science and Business Media Deutschland GmbH, 2021)
      Almost all of the automatic accident detection (AAD) system suffers from the tradeoff between computational overhead and detection accuracy. Recent advances in detection and classification methodologies have shown phenomenal ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja