• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem

    CompareML: A Novel Approach to Supporting Preliminary Data Analysis Decision Making

    Autor: 
    Fernández-García, Antonio Jesús
    ;
    Preciado, Juan Carlos
    ;
    Prieto, Álvaro E.
    ;
    Sánchez-Figueroa, Fernando
    ;
    Gutiérrez, Juan D.
    Fecha: 
    06/2022
    Palabra clave: 
    classification; decision support system; knowledge elicitation; machine learning; regression; software; IJIMAI; Scopus; JCR
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13562
    DOI: 
    https://doi.org/10.9781/ijimai.2021.08.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2982
    Open Access
    Resumen:
    There are a large number of machine learning algorithms as well as a wide range of libraries and services that allow one to create predictive models. With machine learning and artificial intelligence playing a major role in dealing with engineering problems, practising engineers often come to the machine learning field so overwhelmed with the multitude of possibilities that they find themselves needing to address difficulties before actually starting on carrying out any work. Datasets have intrinsic properties that make it hard to select the algorithm that is best suited to some specific objective, and the ever-increasing number of providers together make this selection even harder. These were the reasons underlying the design of CompareML, an approach to supporting the evaluation and comparison of machine learning libraries and services without deep machine learning knowledge. CompareML makes it easy to compare the performance of different models by using well-known classification and regression algorithms already made available by some of the most widely used providers. It facilitates the practical application of methods and techniques of artificial intelligence that let a practising engineer decide whether they might be used to resolve hitherto intractable problems. Thus, researchers and engineering practitioners can uncover the potential of their datasets for the inference of new knowledge by selecting the most appropriate machine learning algorithm and determining the provider best suited to their data.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_7_4_20.pdf
    Tamaño: 1.476Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS
    • vol. 7, nº 4, june 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    42
    69
    93
    142
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    28
    45
    28
    39

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Creating a Recommender System to Support Higher Education Students in the Subject Enrollment Decision 

      Fernández-García, Antonio Jesús ; Rodríguez-Echeverría, Roberta; Preciado, Juan Carlos; Conejero Manzano, José María; Sánchez-Figueroa, Fernando (IEEE Access, 2020)
      Higher Education plays a principal role in the changing and complex world of today, and there has been rapid growth in the scientific literature dedicated to predicting students academic success or risk of dropout thanks ...
    • Towards the use of Data Engineering, Advanced Visualization techniques and Association Rules to support knowledge discovery for public policies 

      Conejero Manzano, José María; Preciado, Juan Carlos; Fernández-García, Antonio Jesús ; Prieto, Álvaro; Rodriguez-Echeverría, Roberto (Expert systems with applications, 2021)
      Education and employment are key aspects of a country's well-being. Governments expend valuable resources on designing education plans and employment programs. These two aspects are usually analysed separately, although, ...
    • A real-life machine learning experience for predicting university dropout at different stages using academic data 

      Fernández-García, Antonio Jesús ; Preciado, Juan Carlos; Melchor, Fran; Rodriguez-Echeverría, Roberto; Conejero Manzano, José María; Sánchez, Fernando (Institute of Electrical and Electronics Engineers Inc., 2021)
      High levels of school dropout are a major burden on the educational and professional development of a country's inhabitants. A country's prosperity depends, among other factors, on its ability to produce higher education ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja