Optimized DWT Based Digital Image Watermarking and Extraction Using RNN-LSTM
Autor:
Kumari, R. Radha
; Kumar, V. Vijaya
; Naidu, K. Rama
Fecha:
12/2021Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)Tipo de Ítem:
articleDirección web:
https://www.ijimai.org/journal/bibcite/reference/3033Resumen:
The rapid growth of Internet and the fast emergence of multi-media applications over the past decades have led to new problems such as illegal copying, digital plagiarism, distribution and use of copyrighted digital data. Watermarking digital data for copyright protection is a current need of the community. For embedding watermarks, robust algorithms in die media will resolve copyright infringements. Therefore, to enhance the robustness, optimization techniques and deep neural network concepts are utilized. In this paper, the optimized Discrete Wavelet Transform (DWT) is utilized for embedding the watermark. The optimization algorithm is a combination of Simulated Annealing (SA) and Tunicate Swarm Algorithm (TSA). After performing the embedding process, the extraction is processed by deep neural network concept of Recurrent Neural Network based Long Short-Term Memory (RNN-LSTM). From the extraction process, the original image is obtained by this RNN-LSTM method. The experimental set up is carried out in the MATLAB platform. The performance metrics of PSNR, NC and SSIM are determined and compared with existing optimization and machine learning approaches. The results are achieved under various attacks to show the robustness of the proposed work.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
45 |
88 |
140 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
40 |
82 |
152 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Comparative study on ant colony optimization (ACO) and K-Means clustering approaches for jobs scheduling and energy optimization model in Internet of Things (IoT)
Kumar, Sumit; Kumar-Solanki, Vijender; Kumar Choudhary, Saket; Selamat, Ali; González-Crespo, Rubén (International Journal of Interactive Multimedia and Artificial Intelligence, 03/2020)The concept of Internet of Things (IoT) was proposed by Professor Kevin Ashton of the Massachusetts Institute of Technology (MIT) in 1999. IoT is an environment that people understand in many different ways depending on ... -
Human Activity Recognition in Real-Times Environments using Skeleton Joints
Kumar, Ajay; Kumar, Anil; Kumar Singh, Satish; Kala, Rahul (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 2016)In this research work, we proposed a most effective noble approach for Human activity recognition in real-time environments. We recognize several distinct dynamic human activity actions using kinect. A 3D skeleton data ... -
Comparative Study on Ant Colony Optimization (ACO) and K-Means Clustering Approaches for Jobs Scheduling and Energy Optimization Model in Internet of Things (IoT)
Kumar, Sumit; Kumar-Solanki, Vijender; Kumar Choudhary, Saket; Selamat, Ali; González-Crespo, Rubén (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2020)The concept of Internet of Things (IoT) was proposed by Professor Kevin Ashton of the Massachusetts Institute of Technology (MIT) in 1999. IoT is an environment that people understand in many different ways depending on ...