Mostrar el registro sencillo del ítem

dc.contributor.authorJuan, Chun-Jung
dc.contributor.authorWang, Chen-Shu
dc.contributor.authorLee, Bo-Yi
dc.contributor.authorChiang, Shang-Yu
dc.contributor.authorYeh, Chun-Chang
dc.contributor.authorCho, Der-Yang
dc.contributor.authorShen, Wu-Chung
dc.date2021-09
dc.date.accessioned2022-05-03T12:05:15Z
dc.date.available2022-05-03T12:05:15Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/13003
dc.description.abstractCervical spondylosis is a kind of degenerative disease which not only occurs in elder patients. The age distribution of patients is unfortunately decreasing gradually. Magnetic Resonance Imaging (MRI) is the best tool to confirm the cervical spondylosis severity but it requires radiologist to spend a lot of time for image check and interpretation. In this study, we proposed a prediction model to evaluate the cervical spine condition of patients by using MRI data. Furthermore, to ensure the computing efficiency of the proposed model, we adopted a heuristic programming, genetic programming (GP), to build the core of refereeing engine by combining the TABU search (TS) with the evolutionary GP. Finally, to validate the accuracy of the proposed model, we implemented experiments and compared our prediction results with radiologist’s diagnosis to the same MRI image. The experiment found that using clinical indicators to optimize the TABU list in GP+TABU got better fitness than the other two methods and the accuracy rate of our proposed model can achieve 88% on average. We expected the proposed model can help radiologists reduce the interpretation effort and improve the relationship between doctors and patients.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 6, nº 7
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2992es_ES
dc.rightsopenAccesses_ES
dc.subjectcervical spondylosises_ES
dc.subjectmagnetic resonance imaginges_ES
dc.subjectgenetic programminges_ES
dc.subjectTABU searches_ES
dc.subjectautomatic detectiones_ES
dc.subjectIJIMAIes_ES
dc.titleIntegration of Genetic Programming and TABU Search Mechanism for Automatic Detection of Magnetic Resonance Imaging in Cervical Spondylosises_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2021.08.006


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem