• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 5, march 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 5, march 2021
    • Ver ítem

    Efficient and Robust Model Benchmarks with Item Response Theory and Adaptive Testing

    Autor: 
    Song, Hao
    ;
    Flach, Peter
    Fecha: 
    03/2021
    Palabra clave: 
    item response theory; adaptive testing; model evaluation; benchmark; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12915
    DOI: 
    https://doi.org/10.9781/ijimai.2021.02.009
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2901
    Open Access
    Resumen:
    Progress in predictive machine learning is typically measured on the basis of performance comparisons on benchmark datasets. Traditionally these kinds of empirical evaluation are carried out on large numbers of datasets, but this is becoming increasingly hard due to computational requirements and the often large number of alternative methods to compare against. In this paper we investigate adaptive approaches to achieve better efficiency on model benchmarking. For a large collection of datasets, rather than training and testing a given approach on every individual dataset, we seek methods that allow us to pick only a few representative datasets to quantify the model’s goodness, from which to extrapolate to performance on other datasets. To this end, we adapt existing approaches from psychometrics: specifically, Item Response Theory and Adaptive Testing. Both are well-founded frameworks designed for educational tests. We propose certain modifications following the requirements of machine learning experiments, and present experimental results to validate the approach.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_5_11_0.pdf
    Tamaño: 1.481Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 5, march 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    31
    63
    119
    59
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    18
    35
    56
    37

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Preface 

      Pang, C.; Chen, G.; Chen, L.; Zhang, B.; Li, Q.; Gao, Y.; Popescu, E.; Hao, T.; Navarro, S.M.B. ; Klamma, R. (Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 2021)
      Preface
    • An Ensemble Classifier for Stock Trend Prediction Using Sentence-Level Chinese News Sentiment and Technical Indicators 

      Chen, Chun-Hao; Chen, Po-Yeh; Chun-Wei Lin, Jerry (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2022)
      In the financial market, predicting stock trends based on stock market news is a challenging task, and researchers are devoted to developing forecasting models. From the existing literature, the performance of the forecasting ...
    • A Generalized Wine Quality Prediction Framework by Evolutionary Algorithms 

      Hui-Ye Chiu, Terry; Wu, Chienwen; Chen, Chun-Hao (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      Wine is an exciting and complex product with distinctive qualities that makes it different from other manufactured products. Therefore, the testing approach to determine the quality of wine is complex and diverse. Several ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja