• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 7, september 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 7, september 2021
    • Ver ítem

    A Generalized Wine Quality Prediction Framework by Evolutionary Algorithms

    Autor: 
    Hui-Ye Chiu, Terry
    ;
    Wu, Chienwen
    ;
    Chen, Chun-Hao
    Fecha: 
    09/2021
    Palabra clave: 
    decision trees; genetic algorithms; machine learning; random forest; support vector machine; wine quality prediction; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12998
    DOI: 
    https://doi.org/10.9781/ijimai.2021.04.006
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/export/bibtex/bibcite_reference/2935
    Open Access
    Resumen:
    Wine is an exciting and complex product with distinctive qualities that makes it different from other manufactured products. Therefore, the testing approach to determine the quality of wine is complex and diverse. Several elements influence wine quality, but the views of experts can cause the most considerable influence on how people view the quality of wine. The views of experts on quality is very subjective, and may not match the taste of consumer. In addition, the experts may not always be available for the wine testing. To overcome this issue, many approaches based on machine learning techniques that get the attention of the wine industry have been proposed to solve it. However, they focused only on using a particular classifier with a specific set of wine dataset. In this paper, we thus firstly propose the generalized wine quality prediction framework to provide a mechanism for finding a useful hybrid model for wine quality prediction. Secondly, based on the framework, the generalized wine quality prediction algorithm using the genetic algorithms is proposed. It first encodes the classifiers as well as their hyperparameters into a chromosome. The fitness of a chromosome is then evaluated by the average accuracy of the employed classifiers. The genetic operations are performed to generate new offspring. The evolution process is continuing until reaching the stop criteria. As a result, the proposed approach can automatically find an appropriate hybrid set of classifiers and their hyperparameters for optimizing the prediction result and independent on the dataset. At last, experiments on the wine datasets were made to show the merits and effectiveness of the proposed approach.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai6_7_6.pdf
    Tamaño: 1.994Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 7, september 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    77
    89
    162
    202
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    89
    153
    53
    71

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • An Ensemble Classifier for Stock Trend Prediction Using Sentence-Level Chinese News Sentiment and Technical Indicators 

      Chen, Chun-Hao; Chen, Po-Yeh; Chun-Wei Lin, Jerry (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2022)
      In the financial market, predicting stock trends based on stock market news is a challenging task, and researchers are devoted to developing forecasting models. From the existing literature, the performance of the forecasting ...
    • Integration of Genetic Programming and TABU Search Mechanism for Automatic Detection of Magnetic Resonance Imaging in Cervical Spondylosis 

      Juan, Chun-Jung; Wang, Chen-Shu; Lee, Bo-Yi; Chiang, Shang-Yu; Yeh, Chun-Chang; Cho, Der-Yang; Shen, Wu-Chung (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      Cervical spondylosis is a kind of degenerative disease which not only occurs in elder patients. The age distribution of patients is unfortunately decreasing gradually. Magnetic Resonance Imaging (MRI) is the best tool to ...
    • Preface 

      Pang, C.; Chen, G.; Chen, L.; Zhang, B.; Li, Q.; Gao, Y.; Popescu, E.; Hao, T.; Navarro, S.M.B. ; Klamma, R. (Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 2021)
      Preface

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja