A Generalized Wine Quality Prediction Framework by Evolutionary Algorithms
Autor:
Hui-Ye Chiu, Terry
; Wu, Chienwen
; Chen, Chun-Hao
Fecha:
09/2021Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)Tipo de Ítem:
articleResumen:
Wine is an exciting and complex product with distinctive qualities that makes it different from other manufactured products. Therefore, the testing approach to determine the quality of wine is complex and diverse. Several elements influence wine quality, but the views of experts can cause the most considerable influence on how people view the quality of wine. The views of experts on quality is very subjective, and may not match the taste of consumer. In addition, the experts may not always be available for the wine testing. To overcome this issue, many approaches based on machine learning techniques that get the attention of the wine industry have been proposed to solve it. However, they focused only on using a particular classifier with a specific set of wine dataset. In this paper, we thus firstly propose the generalized wine quality prediction framework to provide a mechanism for finding a useful hybrid model for wine quality prediction. Secondly, based on the framework, the generalized wine quality prediction algorithm using the genetic algorithms is proposed. It first encodes the classifiers as well as their hyperparameters into a chromosome. The fitness of a chromosome is then evaluated by the average accuracy of the employed classifiers. The genetic operations are performed to generate new offspring. The evolution process is continuing until reaching the stop criteria. As a result, the proposed approach can automatically find an appropriate hybrid set of classifiers and their hyperparameters for optimizing the prediction result and independent on the dataset. At last, experiments on the wine datasets were made to show the merits and effectiveness of the proposed approach.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
77 |
89 |
153 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
89 |
153 |
50 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
An Ensemble Classifier for Stock Trend Prediction Using Sentence-Level Chinese News Sentiment and Technical Indicators
Chen, Chun-Hao; Chen, Po-Yeh; Chun-Wei Lin, Jerry (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2022)In the financial market, predicting stock trends based on stock market news is a challenging task, and researchers are devoted to developing forecasting models. From the existing literature, the performance of the forecasting ... -
Integration of Genetic Programming and TABU Search Mechanism for Automatic Detection of Magnetic Resonance Imaging in Cervical Spondylosis
Juan, Chun-Jung; Wang, Chen-Shu; Lee, Bo-Yi; Chiang, Shang-Yu; Yeh, Chun-Chang; Cho, Der-Yang; Shen, Wu-Chung (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)Cervical spondylosis is a kind of degenerative disease which not only occurs in elder patients. The age distribution of patients is unfortunately decreasing gradually. Magnetic Resonance Imaging (MRI) is the best tool to ... -
Preface
Pang, C.; Chen, G.; Chen, L.; Zhang, B.; Li, Q.; Gao, Y.; Popescu, E.; Hao, T.; Navarro, S.M.B. ; Klamma, R. (Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 2021)Preface