Mostrar el registro sencillo del ítem

dc.contributor.authorJin, Xin
dc.contributor.authorXiao, Yong
dc.contributor.authorLi, Shiqi
dc.contributor.authorWang, Suying
dc.date2020-12
dc.date.accessioned2022-04-08T08:18:18Z
dc.date.available2022-04-08T08:18:18Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12833
dc.description.abstractSM3 is a Chinese hash standard. HMAC SM3 uses a secret key to encrypt the input text and gives an output as the HMAC of the input text. If the key is recovered, adversaries can easily forge a valid HMAC. We can choose different methods, such as traditional side channel analysis, template attack-based side channel analysis to recover the secret key. Deep Learning has recently been introduced as a new alternative to perform Side-Channel analysis. In this paper, we try to recover the secret key with deep learning-based side channel analysis. We should train the network recursively for different parameters by using the same dataset and attack the target dataset with the trained network to recover different parameters. The experiment results show that the secret key can be recovered with deep learning-based side channel analysis. This work demonstrates the interests of this new method and show that this attack can be performed in practice.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 6, nº 4
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2841es_ES
dc.rightsopenAccesses_ES
dc.subjectconvolutional neural network (CNN)es_ES
dc.subjectHMACes_ES
dc.subjectside channel analysises_ES
dc.subjectIJIMAIes_ES
dc.titleDeep Learning-based Side Channel Attack on HMAC SM3es_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2020.11.007


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem