• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 4, december 2020
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 4, december 2020
    • Ver ítem

    A Feature Extraction Method Based on Feature Fusion and its Application in the Text-Driven Failure Diagnosis Field

    Autor: 
    Zhou, Shenghan
    ;
    Chen, Bang
    ;
    Zhang, Yue
    ;
    Liu, HouXiang
    ;
    Xiao, Yiyong
    ;
    Pan, Xing
    Fecha: 
    12/2020
    Palabra clave: 
    feature extraction; feature fusion; text mining; failure diagnosis; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12816
    DOI: 
    https://doi.org/10.9781/ijimai.2020.11.006
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2838
    Open Access
    Resumen:
    As a basic task in NLP (Natural Language Processing), feature extraction directly determines the quality of text clustering and text classification. However, the commonly used TF-IDF (Term Frequency & Inverse Document Frequency) and LDA (Latent Dirichlet Allocation) text feature extraction methods have shortcomings in not considering the text’s context and blindness to the topic of the corpus. This study builds a feature extraction algorithm and application scenarios in the field of failure diagnosis. A text-driven failure diagnosis model is designed to classify and automatically judge which failure mode the failure described in the text belongs to once a failure-description text is entered. To verify the effectiveness of the proposed feature extraction algorithm and failure diagnosis model, a long-term accumulated failure description text of an aircraft maintenance and support system was used as a subject to conduct an empirical study. The final experimental results also show that the proposed feature extraction method can effectively improve the effect of clustering, and the proposed failure diagnosis model achieves high accuracies and low false alarm rates.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_4_13.pdf
    Tamaño: 1.241Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 4, december 2020

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    19
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    8

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Preface 

      Pang, C.; Chen, G.; Chen, L.; Zhang, B.; Li, Q.; Gao, Y.; Popescu, E.; Hao, T.; Navarro, S.M.B. (1); Klamma, R. (Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 2021)
      Preface
    • A systematic review of systematic reviews on blended learning: Trends, gaps and future directions 

      Ashraf, M.A; Yang, M.; Zhang, Y.; Denden, Mouna; Tlili, Ahmed; Liu, J.; Huang, Ronghuai; Burgos, Daniel (1) (Dove Medical Press Ltd, 2021)
      Blended Learning (BL) is one of the most used methods in education to promote active learning and enhance students’ learning outcomes. Although BL has existed for over a decade, there are still several challenges associated ...
    • A Systematic Literature Review of Empirical Studies on Learning Analytics in Educational Games 

      Tlili, Ahmed; Chang, Maiga; Moon, Jewoong; Liu, Zhichun; Burgos, Daniel; Chen, Nian-Shing; Kinshuk (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)
      Learning analytics (LA) in educational games is considered an emerging practice due to its potential of enhancing the learning process. Growing research on formative assessment has shed light on the ways in which students' ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja