Mostrar el registro sencillo del ítem

dc.contributor.authorKadry, Seifedine
dc.contributor.authorRajinikanth, Venkatesan
dc.contributor.authorGonzález-Crespo, Rubén
dc.contributor.authorVerdú, Elena
dc.date2022
dc.date.accessioned2022-03-31T08:36:59Z
dc.date.available2022-03-31T08:36:59Z
dc.identifier.issn0920-8542
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12771
dc.description.abstractAn eye disease affects the entire sensory operation, and an unrecognised and untreated eye disease may lead to loss of vision. The proposed work aims to develop an automated age-related macular degeneration (AMD) detection system using a Deep-Learning (DL) scheme with serially concatenated deep and handcrafted features. The research includes the following phases: initial data processing, deep-features extraction with VGG16, handcrafted feature extraction, optimal feature selection using Mayfly-Algorithm, serial features concatenation, and binary classification and validation. In this work, the handcrafted features, such as local binary pattern (LBP), pyramid histogram of oriented gradients (PHOG), and discrete wavelet transform (DWT), are extracted from the test images and concatenated with the deep-features of VGG16. The performance of the developed system is separately tested using fundus retinal images (FRI) and optical coherence tomography (OCT) images. A binary classification with a fivefold cross validation is employed and the best outcome of this trial is chosen as the result. The performance of VGG16 is then compared with that of VGG19, ResNet50, and AlexNet. The experimental outcome of this research confirms that the proposal of VGG16 with concatenated features achieves AMD detection accuracies of 97.08 and 97.50 for FRI and OCT images, respectively.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.ispartofseries;vol. 78, nº 5
dc.relation.urihttps://link.springer.com/article/10.1007/s11227-021-04181-wes_ES
dc.rightsrestrictedAccesses_ES
dc.subjectAMDes_ES
dc.subjectAutomated detectiones_ES
dc.subjectretinal abnormalityes_ES
dc.subjectserial concatenationes_ES
dc.subjectVGG16es_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleAutomated detection of age-related macular degeneration using a pre-trained deep-learning schemees_ES
dc.typearticlees_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s11227-021-04181-w


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem