• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 2, june 2020
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 2, june 2020
    • Ver ítem

    An Extreme Learning Machine-Relevance Feedback Framework for Enhancing the Accuracy of a Hybrid Image Retrieval System

    Autor: 
    Shikha, B
    ;
    Gitanjali, P
    ;
    Kumar, D. Pawan
    Fecha: 
    06/2020
    Palabra clave: 
    extreme learning machine; gray level Co-occurrence matrix; relevance feedback; region props procedure; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12728
    DOI: 
    https://doi.org/10.9781/ijimai.2020.01.002
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2749
    Open Access
    Resumen:
    The process of searching, indexing and retrieving images from a massive database is a challenging task and the solution to these problems is an efficient image retrieval system. In this paper, a unique hybrid Content-based image retrieval system is proposed where different attributes of an image like texture, color and shape are extracted by using Gray level co-occurrence matrix (GLCM), color moment and various region props procedure respectively. A hybrid feature matrix or vector (HFV) is formed by an integration of feature vectors belonging to three individual visual attributes. This HFV is given as an input to an Extreme learning machine (ELM) classifier which is based on a solitary hidden layer of neurons and also is a type of feed-forward neural system. ELM performs efficient class prediction of the query image based on the pre-trained data. Lastly, to capture the high level human semantic information, Relevance feedback (RF) is utilized to retrain or reformulate the training of ELM. The advantage of the proposed system is that a combination of an ELM-RF framework leads to an evolution of a modified learning and intelligent classification system. To measure the efficiency of the proposed system, various parameters like Precision, Recall and Accuracy are evaluated. Average precision of 93.05%, 81.03%, 75.8% and 90.14% is obtained respectively on Corel-1K, Corel-5K, Corel-10K and GHIM-10 benchmark datasets. The experimental analysis portrays that the implemented technique outmatches many state-of-the-art related approaches depicting varied hybrid CBIR system.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_2_3.pdf
    Tamaño: 1.536Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 2, june 2020

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    23
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    8

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Comparative study on ant colony optimization (ACO) and K-Means clustering approaches for jobs scheduling and energy optimization model in Internet of Things (IoT) 

      Kumar, Sumit; Kumar-Solanki, Vijender; Kumar Choudhary, Saket; Selamat, Ali; González-Crespo, Rubén (1) (International Journal of Interactive Multimedia and Artificial Intelligence, 03/2020)
      The concept of Internet of Things (IoT) was proposed by Professor Kevin Ashton of the Massachusetts Institute of Technology (MIT) in 1999. IoT is an environment that people understand in many different ways depending on ...
    • Human Activity Recognition in Real-Times Environments using Skeleton Joints 

      Kumar, Ajay; Kumar, Anil; Kumar Singh, Satish; Kala, Rahul (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 2016)
      In this research work, we proposed a most effective noble approach for Human activity recognition in real-time environments. We recognize several distinct dynamic human activity actions using kinect. A 3D skeleton data ...
    • Comparative Study on Ant Colony Optimization (ACO) and K-Means Clustering Approaches for Jobs Scheduling and Energy Optimization Model in Internet of Things (IoT) 

      Kumar, Sumit; Kumar-Solanki, Vijender; Kumar Choudhary, Saket; Selamat, Ali; González-Crespo, Rubén (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2020)
      The concept of Internet of Things (IoT) was proposed by Professor Kevin Ashton of the Massachusetts Institute of Technology (MIT) in 1999. IoT is an environment that people understand in many different ways depending on ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja