• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Alzheimer's Patient Analysis Using Image and Gene Expression Data and Explainable-AI to Present Associated Genes

    Autor: 
    Kamal, M.S
    ;
    Northcote, A
    ;
    Chowdhury, L
    ;
    Dey, Nilanjan
    ;
    González-Crespo, Rubén
    ;
    Herrera-Viedma, Enrique
    Fecha: 
    2021
    Palabra clave: 
    convolutional neural network (CNN); gene expression measurements; k-nearest neighbors (KNN); local interpretable model-agnostic explanations (LIMEs); SpinalNet; support vector classifier (SVC); Xboost; Scopus; JCR
    Revista / editorial: 
    Institute of Electrical and Electronics Engineers Inc.
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12680
    DOI: 
    https://doi.org/10.1109/TIM.2021.3107056
    Dirección web: 
    https://ieeexplore.ieee.org/document/9521165/authors#authors
    Resumen:
    There are more than 10 million new cases of Alzheimer's patients worldwide each year, which means there is a new case every 3.2 s. Alzheimer's disease (AD) is a progressive neurodegenerative disease and various machine learning (ML) and image processing methods have been used to detect it. In this study, we used ML methods to classify AD using image and gene expression data. First, SpinalNet and convolutional neural network (CNN) were used to classify AD from MRI images. Then we used microarray gene expression data to classify the diseases using k-nearest neighbors (KNN), support vector classifier (SVC), and Xboost classifiers. Previous approaches used only either images or gene expression, while we used both data together and also explained the results using trustworthy methods. it was difficult to understand how the classifiers predicted the diseases and genes. It would be useful if the results of these classifiers could be explained in a trustworthy way. To establish trustworthy predictive modeling, we introduced an explainable artificial intelligence (XAI) method. The XAI approach we used here is local interpretable model-agnostic explanations (LIME) for a simple human interpretation. LIME interprets how genes were predicted and which genes are particularly responsible for an AD patient. The accuracy of CNN is 97.6%, which is 10.96% higher than the SpinlNet approach. When analyzing gene expression data, SVC provides higher accuracy than other approaches. LIME shows how genes were selected for a particular AD patient and the most important genes for that patient were determined from the gene expression data.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    40
    68
    73
    67
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Finding an accurate early forecasting model from small dataset: A case of 2019-nCoV novel coronavirus outbreak 

      Fong, Simon James; Li, Gloria; Dey, Nilanjan; González-Crespo, Rubén ; Herrera-Viedma, Enrique (International Journal of Interactive Multimedia and Artificial Intelligence, 03/2020)
      Epidemic is a rapid and wide spread of infectious disease threatening many lives and economy damages. It is important to fore-tell the epidemic lifetime so to decide on timely and remedic actions. These measures include ...
    • Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction 

      Fong, Simon James; Li, Gloria; Dey, Nilanjan; González-Crespo, Rubén ; Herrera-Viedma, Enrique (Applied Soft Computing Journal, 08/2020)
      In the advent of the novel coronavirus epidemic since December 2019, governments and authorities have been struggling to make critical decisions under high uncertainty at their best efforts. In computer science, this ...
    • A new SEAIRD pandemic prediction model with clinical and epidemiological data analysis on COVID-19 outbreak 

      Liu, Xian-Xian; Fong, Simon James; Dey, Nilanjan; González-Crespo, Rubén ; Herrera-Viedma, Enrique (Applied intelligence, 2021)
      Measuring the spread of disease during a pandemic is critically important for accurately and promptly applying various lockdown strategies, so to prevent the collapse of the medical system. The latest pandemic of COVID-19 ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja