• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 7, december 2019
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 7, december 2019
    • Ver ítem

    Image Classification Methods Applied in Immersive Environments for Fine Motor Skills Training in Early Education

    Autor: 
    Gaona-García, Paulo Alonso
    ;
    Montenegro-Marin, Carlos Enrique
    ;
    Sarría Martínez-Mendivil, Íñigo
    ;
    Restrepo Rodríguez, Andrés Ovidio
    ;
    Ariza Riaño, Maddyzeth
    Fecha: 
    12/2019
    Palabra clave: 
    augmented reality; image recognition; support vector machine; decision tree; convolutional neural network (CNN); K-nearest neighbors; immersive environment; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12668
    DOI: 
    http://doi.org/10.9781/ijimai.2019.10.004
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2744
    Open Access
    Resumen:
    Fine motor skills allow to carry out the execution of crucial tasks in people's daily lives, increasing their independence and self-esteem. Among the alternatives for working these skills, immersive environments are found providing a set of elements arranged to have a haptic experience through gestural control devices. However, generally, these environments do not have a mechanism for evaluation and feedback of the exercise performed, which does not easily identify the objective's fulfillment. For this reason, this study aims to carry out a comparison of image recognition methods such as Convolutional Neural Network (CNN), K-Nearest Neighbor (K-NN), Support Vector Machine (SVM) and Decision Tree (DT), for the purpose of performing an evaluation and feedback of exercises. The assessment of the techniques is carried out using images captured from an immersive environment, calculating metrics such as confusion matrix, cross validation and classification report. As a result of this process, it was obtained that the CNN model has a better supported performance in 82.5% accuracy, showing an increase of 23.5% compared to SVM, 30% compared to K-NN and 25% compared to DT. Finally, it is concluded that in order to implement a method of evaluation and feedback in an immersive environment for academic training in the first school years, a low margin of error must be taken in the percentage of successes of the image recognition technique implemented, to ensure the proper development of these skills considering their great importance in childhood.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20195_7_15_pdf_81774.pdf
    Tamaño: 1.331Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 7, december 2019

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    56
    12
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    20
    4

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Image Classification Methods Applied in Immersive Environments for Fine Motor Skills Training in Early Education 

      Restrepo Rodríguez, Andrés Ovidio; Ariza Riano, Maddyzeth; Gaona-García, Paulo Alonso; Montenegro-Marin, Carlos Enrique; Sarría, Íñigo (1) (International Journal of Interactive Multimedia and Artificial Intelligence, 12/2019)
      Fine motor skills allow to early out the execution of crucial tasks in people's daily lives, increasing their independence and self-esteem. Among the alternatives for working these skills. immersive environments are found ...
    • Emotional characterization of children through a learning environment using learning analytics and AR-Sandbox 

      Restrepo Rodríguez, Andrés Ovidio; Ariza Riano, Maddyzeth; Gaona-García, Paulo Alonso; Montenegro-Marin, Carlos Enrique; González-Crespo, Rubén (1); Wu, Xing (Journal of Ambient Intelligence and Humanized Computing, 03/2020)
      Identifying emotions experienced by students in a learning environment contributes to measuring the impact when technologies such as augmented reality (AR) are implemented in the educational field. The most frequent methods ...
    • Time Series for Evaluation of Performance Metrics as of Interaction with an AR-Sandbox Using Brain Computer Interfaces 

      Restrepo Rodríguez, Andrés Ovidio (1); Ariza Riaño, Maddyzeth; Gaona-García, Paulo Alonso; Montenegro-Marín, Carlos (Lecture Notes in Networks and Systems, 2022)
      Technologies such as Augmented Reality (AR) can generate an impact within the educational process of students, which can be measured from the perspective of users. Generally, this perspective is evaluated from questionnaires ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja