• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 7, december 2019
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 7, december 2019
    • Ver ítem

    Performance Enhancement of Wind Farms Using Tuned SSSC Based on Artificial Neural Network

    Autor: 
    Kamel, Salah
    ;
    Jurado, Francisco
    ;
    Rashad, Ahmed
    ;
    Ibrahim, Yousry
    ;
    Nasrat, Loai
    Fecha: 
    12/2019
    Palabra clave: 
    artificial neural networks; doubly fed induction generator (DFIG); squirrel cage induction generator (SCIG); combined wind farm (CWF); static synchronous series compensator (SSSC); IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12657
    DOI: 
    http://doi.org/10.9781/ijimai.2019.05.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2721
    Open Access
    Resumen:
    Recently, power systems are confronting a lot of challenges. Increasing the dependence on renewable energy sources especially wind energy and its impact on the stability of electrical systems are the most important challenges. Flexible alternating current transmission systems (FACTS) can be used to improve the relationship between wind farms and electrical grids. The performance of these FACTS depends on the parameters of its control system. These parameters can be tuned using modern methods like Artificial Neural Network (ANN). In this paper, ANN is used to improve the performance of static synchronous series compensator (SSSC) integrated into combined wind farm (CWF). This CWF is composed of squirrel cage induction generators (SCIG) and doubly fed induction generators (DFIG) wind turbines. This wind farm is collecting the advantage of SCIG and DFIG wind turbines. To view out the motivation of this paper, a comparison is done among the performances of combined wind farm (CWF) with ANN-SSSC, CWF with ordinary SSSC and CWF with SSSC tune by Multi-objective genetic algorithm (MOGA SSSC). The root mean square Error (RMSE) is used to evaluate the results. The results illustrate that the performance of CWF can be improved using SSSC adjusted by ANN.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20195_7_12_pdf_71211.pdf
    Tamaño: 1.391Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 7, december 2019

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    17
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    5

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Optimal Performance of Doubly Fed Induction Generator Wind Farm Using Multi-Objective Genetic Algorithm 

      Kamel, Salah; Jurado, Francisco; Elkasem, Ahmed; Rashad, Ahmed (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2019)
      The main purpose of this paper is allowing doubly fed induction generator wind farms (DFIG), which are connected to power system, to effectively participate in feeding electrical loads. The oscillation in power system is ...
    • Probabilistic Load Flow Solution Considering Optimal Allocation of SVC in Radial Distribution System 

      Ahmed, Walaa; Selim, Ali; Kamel, Salah; Yu, Juan; Jurado, Francisco (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2018)
      This paper proposes a solution procedure for probabilistic load flow problem considering the optimal allocation of Static Var Compensator (SVC) in radial distribution systems. Pareto Envelope-based Selection Algorithm II ...
    • Tree Growth Algorithm for Parameter Identification of Proton Exchange Membrane Fuel Cell Models 

      Kamel, Salah; Jurado, Francisco; Sultan, Hamdy; Menesy, Ahmed (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2020)
      Demonstrating an accurate mathematical model is a mandatory issue for realistic simulation, optimization and performance evaluation of proton exchange membrane fuel cells (PEMFCs). The main goal of this study is to demonstrate ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja