• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 5, june 2019
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 5, june 2019
    • Ver ítem

    Optimal Performance of Doubly Fed Induction Generator Wind Farm Using Multi-Objective Genetic Algorithm

    Autor: 
    Kamel, Salah
    ;
    Jurado, Francisco
    ;
    Elkasem, Ahmed
    ;
    Rashad, Ahmed
    Fecha: 
    06/2019
    Palabra clave: 
    genetic algorithms; multi-objective genetic algorithm (MOGA); doubly fed induction generator (DFIG); squirrel cage induction generator (SCIG); IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12529
    DOI: 
    http://doi.org/10.9781/ijimai.2019.03.007
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2716
    Open Access
    Resumen:
    The main purpose of this paper is allowing doubly fed induction generator wind farms (DFIG), which are connected to power system, to effectively participate in feeding electrical loads. The oscillation in power system is one of the challenges of the interconnection of wind farms to the grid. The model of DFIG contains several gains which need to be achieved with optimal values. This aim can be accomplished using an optimization algorithm in order to obtain the best performance. The multi-objective optimization algorithm is used to determine the optimal control system gains under several objectives. In this paper, a multi-objective genetic algorithm is applied to the DFIG model to determine the optimal values of the gains of DFIG control system. In order to point out the contribution of this work; the performance of optimized DFIG model is compared with the non-optimized model of DFIG. The results show that the optimized model of DFIG has better performance over the non-optimized DFIG model.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_5_5_6_pdf_17227.pdf
    Tamaño: 894.1Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 5, june 2019

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    15
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    6

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Performance Enhancement of Wind Farms Using Tuned SSSC Based on Artificial Neural Network 

      Kamel, Salah; Jurado, Francisco; Rashad, Ahmed; Ibrahim, Yousry; Nasrat, Loai (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2019)
      Recently, power systems are confronting a lot of challenges. Increasing the dependence on renewable energy sources especially wind energy and its impact on the stability of electrical systems are the most important challenges. ...
    • Probabilistic Load Flow Solution Considering Optimal Allocation of SVC in Radial Distribution System 

      Ahmed, Walaa; Selim, Ali; Kamel, Salah; Yu, Juan; Jurado, Francisco (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2018)
      This paper proposes a solution procedure for probabilistic load flow problem considering the optimal allocation of Static Var Compensator (SVC) in radial distribution systems. Pareto Envelope-based Selection Algorithm II ...
    • Tree Growth Algorithm for Parameter Identification of Proton Exchange Membrane Fuel Cell Models 

      Kamel, Salah; Jurado, Francisco; Sultan, Hamdy; Menesy, Ahmed (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2020)
      Demonstrating an accurate mathematical model is a mandatory issue for realistic simulation, optimization and performance evaluation of proton exchange membrane fuel cells (PEMFCs). The main goal of this study is to demonstrate ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja