Mostrar el registro sencillo del ítem

dc.contributor.authorKamel, Salah
dc.contributor.authorJurado, Francisco
dc.contributor.authorRashad, Ahmed
dc.contributor.authorIbrahim, Yousry
dc.contributor.authorNasrat, Loai
dc.date2019-12
dc.date.accessioned2022-03-17T08:46:28Z
dc.date.available2022-03-17T08:46:28Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12657
dc.description.abstractRecently, power systems are confronting a lot of challenges. Increasing the dependence on renewable energy sources especially wind energy and its impact on the stability of electrical systems are the most important challenges. Flexible alternating current transmission systems (FACTS) can be used to improve the relationship between wind farms and electrical grids. The performance of these FACTS depends on the parameters of its control system. These parameters can be tuned using modern methods like Artificial Neural Network (ANN). In this paper, ANN is used to improve the performance of static synchronous series compensator (SSSC) integrated into combined wind farm (CWF). This CWF is composed of squirrel cage induction generators (SCIG) and doubly fed induction generators (DFIG) wind turbines. This wind farm is collecting the advantage of SCIG and DFIG wind turbines. To view out the motivation of this paper, a comparison is done among the performances of combined wind farm (CWF) with ANN-SSSC, CWF with ordinary SSSC and CWF with SSSC tune by Multi-objective genetic algorithm (MOGA SSSC). The root mean square Error (RMSE) is used to evaluate the results. The results illustrate that the performance of CWF can be improved using SSSC adjusted by ANN.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 5, nº 7
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2721es_ES
dc.rightsopenAccesses_ES
dc.subjectartificial neural networkses_ES
dc.subjectdoubly fed induction generator (DFIG)es_ES
dc.subjectsquirrel cage induction generator (SCIG)es_ES
dc.subjectcombined wind farm (CWF)es_ES
dc.subjectstatic synchronous series compensator (SSSC)es_ES
dc.subjectIJIMAIes_ES
dc.titlePerformance Enhancement of Wind Farms Using Tuned SSSC Based on Artificial Neural Networkes_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2019.05.001


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem