• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 6, september 2019
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 6, september 2019
    • Ver ítem

    Model for Prediction of Progression in Multiple Sclerosis

    Autor: 
    Pruenza, Cristina
    ;
    Díaz, Julia
    ;
    Solano, María Teresa
    ;
    Arroyo, Rafael
    ;
    Izquierdo, Guillermo
    Fecha: 
    09/2019
    Palabra clave: 
    machine learning; big data; predictive modelling; multiple sclerosis; extended disability status scale (EDSS); disease-modifying therapy (DMT); IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12633
    DOI: 
    http://doi.org/10.9781/ijimai.2019.06.005
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2729
    Open Access
    Resumen:
    Multiple sclerosis is an idiopathic inflammatory disease of the central nervous system and the second most common cause of disability in young adults. Choosing an effective treatment is crucial to preventing disability. However, response to treatment varies greatly between patients. Because of this, accurate and timely detection of individual response to treatment is an essential requisite of efficient personalised multiple sclerosis therapy. Nowadays, there is a lack of comprehensive predictive models of response to individual treatment.This paper arises from the clinical need to improve this situation. To achieve it, all patient's information was used to evaluate the effectiveness of demographic, clinical and paraclinical variables of individual response to fourteen disease-modifying therapies in MSBase, an international cohort. A personalized prediction model to three stages of disease, as a support tool in clinical decision making for each MS patient, was developed applying machine learning and Big Data techniques. These techniques were also used to reduce the data set and define a minimum set of characteristics for each patient. Best predictors for the response to treatment were identified to refine the predictive model. Fourteen relevant variables were selected. A web application was implemented to be used to support the specialist neurologist in real time. This tool provides a prediction of progression in EDSS from the last relapse of an individual patient, and a report for the medical expert.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20195_6_6_pdf_58400.pdf
    Tamaño: 494.2Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 6, september 2019

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    41
    35
    93
    124
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    44
    31
    103
    74

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Development of a Predictive Model for Induction Success of Labour 

      Pruenza, Cristina; Teurón, María; Lechuga, Luis; Díaz, Julia; González, Ana (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2018)
      Induction of the labour process is an extraordinarily common procedure used in some pregnancies. Obstetricians face the need to end a pregnancy, for medical reasons usually (maternal or fetal requirements) or less frequently, ...
    • Comparison of two methods to estimate adverse events in the IBEAS Study (Ibero-American study of adverse events): cross-sectional versus retrospective cohort design 

      Aranaz Andrés, Jesús María ; Aibar Remón, Carlos; Gea-Velázquez de Castro, María Teresa; Limón Ramírez, Ramón; Bolúmar, Francisco; Hernández-Aguado, Ildefonso; López Fresneña, Nieves ; Díaz-Agero Pérez, Cristina ; Terol García, Enrique; Michel, Philippe; Sousa, Paulo; Larizgoitia Jauregui, Itziar (BMJ Open, 2017)
      Background Adverse events (AEs) epidemiology is the first step to improve practice in the healthcare system. Usually, the preferred method used to estimate the magnitude of the problem is the retrospective cohort study ...
    • Estudio observacional de la salida de tacos de atletismo en las fases específicas "a sus puestos" y "listos" 

      Lapresa Ajamil, Daniel; Solano, Ricardo; Arana, Javier ; Anguera, María Teresa; Aragón, Sonia (Revista Iberoamericana de Psicología del Ejercicio y el Deporte, 2018)
      Se ha diseñado una herramienta observacional ad hoc que permite analizar e interpretar las fases “a sus puestos” y “listos” en la salida de tacos. Los registros correspondientes a cinco atletas juveniles féminas, que ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja