• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 4, nº 7, march 2018
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 4, nº 7, march 2018
    • Ver ítem

    Development of a Predictive Model for Induction Success of Labour

    Autor: 
    Pruenza, Cristina
    ;
    Teurón, María
    ;
    Lechuga, Luis
    ;
    Díaz, Julia
    ;
    González, Ana
    Fecha: 
    03/2018
    Palabra clave: 
    DSS; machine learning; big data; medical entities; predictive modelling; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/11905
    DOI: 
    http://doi.org/10.9781/ijimai.2017.03.003
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2615
    Open Access
    Resumen:
    Induction of the labour process is an extraordinarily common procedure used in some pregnancies. Obstetricians face the need to end a pregnancy, for medical reasons usually (maternal or fetal requirements) or less frequently, social (elective inductions for convenience). The success of induction procedure is conditioned by a multitude of maternal and fetal variables that appear before or during pregnancy or birth process, with a low predictive value. The failure of the induction process involves performing a caesarean section. This project arises from the clinical need to resolve a situation of uncertainty that occurs frequently in our clinical practice. Since the weight of clinical variables is not adequately weighted, we consider very interesting to know a priori the possibility of success of induction to dismiss those inductions with high probability of failure, avoiding unnecessary procedures or postponing end if possible. We developed a predictive model of induced labour success as a support tool in clinical decision making. Improve the predictability of a successful induction is one of the current challenges of Obstetrics because of its negative impact. The identification of those patients with high chances of failure, will allow us to offer them better care improving their health outcomes (adverse perinatal outcomes for mother and newborn), costs (medication, hospitalization, qualified staff) and patient perceived quality. Therefore a Clinical Decision Support System was developed to give support to the Obstetricians. In this article, we had proposed a robust method to explore and model a source of clinical information with the purpose of obtaining all possible knowledge. Generally, in classification models are difficult to know the contribution that each attribute provides to the model. We had worked in this direction to offer transparency to models that may be considered as black boxes. The positive results obtained from both the information recovery system and the predictions and explanations of the classification show the effectiveness and strength of this tool.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_4_7_3_pdf_17377.pdf
    Tamaño: 676.1Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 4, nº 7, march 2018

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    16
    44
    54
    140
    47
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    7
    51
    44
    64
    42

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Model for Prediction of Progression in Multiple Sclerosis 

      Pruenza, Cristina; Díaz, Julia; Solano, María Teresa; Arroyo, Rafael; Izquierdo, Guillermo (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2019)
      Multiple sclerosis is an idiopathic inflammatory disease of the central nervous system and the second most common cause of disability in young adults. Choosing an effective treatment is crucial to preventing disability. ...
    • Engagement Project: elements for a reformulation of the Tutorial Action Plan of the Teacher Training degrees at the University of Barcelona 

      Calderón-Garrido, Diego ; Gustems-Carnicer, Josep; Arús, Maria-Eugènia; Ayuste-González, Ana; Batalla, Albert; Calderón, Caterina; Castell, Julia; Elgstrom, Edmon; Fons, Montserrat; Kieling, Martina; Kirchner, Teresa; Martín, Carolina; Oporto, Marta; Oriola, Salvador; Torres, Andrés; Wilson, Ann-Elizabeth (Cultura y Educación, 2019)
      As a teaching method, tutorials are fundamental to university education, and are underpinned by the following goals: to accompany students; to help them establish a clear training pathway; and to promote their academic ...
    • Translational algorithms for technological dietary quality assessment integrating nutrimetabolic data with machine learning methods 

      de la O, Victor; Fernández-Cruz, Edwin; Matía Matín, Pilar; Larrad-Sainz, Angélica; Espadas Gil, Jose Luis; Barabash, Ana; Fernández-Díaz, Cristina M.; Calle-Pascual, Alfonso L.; Rubio-Herrera, Miguel A.; Martínez, J. Alfredo (MDPI, 2024)
      Recent advances in machine learning technologies and omics methodologies are revolutionizing dietary assessment by integrating phenotypical, clinical, and metabolic biomarkers, which are crucial for personalized precision ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja