• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 5, nº 3, december 2018
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 5, nº 3, december 2018
    • Ver ítem

    Exploratory Boosted Feature Selection and Neural Network Framework for Depression Classification

    Autor: 
    Arun, Vanishri
    ;
    Krishna, Murali
    ;
    Arunkumar, B V
    ;
    Padma, S K
    ;
    Shyam
    Fecha: 
    12/2018
    Palabra clave: 
    neural network; particle swarm optimization; XGBoost; projection-based learning; depression; MYNAH cohort; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12407
    DOI: 
    http://doi.org/10.9781/ijimai.2018.10.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2691
    Open Access
    Resumen:
    Depression is a burdensome psychiatric disease common in low and middle income countries causing disability, morbidity and mortality in late life. In this study, we demonstrate a novel approach for detection of depression using clinical data obtained from the on-going Mysore Studies of Natal effects on Ageing and Health (MYNAH), in South India where the members have undergone a comprehensive assessment for cognitive function, mental health and cardiometabolic disorders. The proposed model is developed using machine learning approach for classification of depression using Meta-Cognitive Neural Network (McNN) classifier with Projection-based learning (PBL) to address the self-regulating principles like how, what and when to learn. XGBoost is used for feature selection on the available data of assessments with improved confidence. To improve the efficiency of McNN-PBL classifier the best parameters are found using Particle Swarm Optimization (PSO) algorithm. The results indicate that the McNNPBL classifier selects appropriate records to learn and remove repetitive records which improve the generalization performance. The study helps the clinician to identify the best parameters to analyze the patient.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_5_3_7_pdf_21185.pdf
    Tamaño: 1.223Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 3, december 2018

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    58
    65
    103
    107
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    55
    61
    61
    54

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Formalization of Event Perception and Event Appraisal Process 

      Jain, Shikha; Asawa, Krishna (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2015)
      Integration of emotion in a virtual agent is a topic of research to depict human-like behavior in a simulated environment. For the last few decades, many researchers are working in the field of incorporating emotions in a ...
    • Recognition of Emotions using Energy Based Bimodal Information Fusion and Correlation 

      Asawa, Krishna; Manchanda, Priyanka (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2014)
      Multi-sensor information fusion is a rapidly developing research area which forms the backbone of numerous essential technologies such as intelligent robotic control, sensor networks, video and image processing and many ...
    • An Evolutionary SVM Model for DDOS Attack Detection in Software Defined Networks 

      Sahoo, Kshira Sagar; Tripathy, Bata Krishna; Naik, Kshirasagar; Ramasubbareddy, Somula; Balusamy, Balamurugan; Khari, Manju; Burgos, Daniel (IEEE ACCESS, 2020)
      Software-Defined Network (SDN) has become a promising network architecture in current days that provide network operators more control over the network infrastructure. The controller, also called as the operating system ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja