Mostrar el registro sencillo del ítem

dc.contributor.authorArun, Vanishri
dc.contributor.authorKrishna, Murali
dc.contributor.authorArunkumar, B V
dc.contributor.authorPadma, S K
dc.contributor.authorShyam
dc.date2018-12
dc.date.accessioned2022-02-08T09:49:25Z
dc.date.available2022-02-08T09:49:25Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12407
dc.description.abstractDepression is a burdensome psychiatric disease common in low and middle income countries causing disability, morbidity and mortality in late life. In this study, we demonstrate a novel approach for detection of depression using clinical data obtained from the on-going Mysore Studies of Natal effects on Ageing and Health (MYNAH), in South India where the members have undergone a comprehensive assessment for cognitive function, mental health and cardiometabolic disorders. The proposed model is developed using machine learning approach for classification of depression using Meta-Cognitive Neural Network (McNN) classifier with Projection-based learning (PBL) to address the self-regulating principles like how, what and when to learn. XGBoost is used for feature selection on the available data of assessments with improved confidence. To improve the efficiency of McNN-PBL classifier the best parameters are found using Particle Swarm Optimization (PSO) algorithm. The results indicate that the McNNPBL classifier selects appropriate records to learn and remove repetitive records which improve the generalization performance. The study helps the clinician to identify the best parameters to analyze the patient.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 5, nº 3
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2691es_ES
dc.rightsopenAccesses_ES
dc.subjectneural networkes_ES
dc.subjectparticle swarm optimizationes_ES
dc.subjectXGBoostes_ES
dc.subjectprojection-based learninges_ES
dc.subjectdepressiones_ES
dc.subjectMYNAH cohortes_ES
dc.subjectIJIMAIes_ES
dc.titleExploratory Boosted Feature Selection and Neural Network Framework for Depression Classificationes_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2018.10.001


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem