Mostrar el registro sencillo del ítem

dc.contributor.authorAkhlaghi, Mohammad
dc.contributor.authorInfante-Sainz, Raul
dc.contributor.authorRoukema, Boudewijn F.
dc.contributor.authorKhellat, Mohammadreza
dc.contributor.authorValls-Gabaud, David
dc.contributor.authorBaena-Galle, Roberto
dc.date2021
dc.date.accessioned2021-12-21T13:50:28Z
dc.date.available2021-12-21T13:50:28Z
dc.identifier.issn1521-9615
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12238
dc.description.abstractAnalysis pipelines commonly use high-level technologies that are popular when created, but are unlikely to be readable, executable, or sustainable in the long term. A set of criteria is introduced to address this problem: completeness (no execution requirement beyond a minimal Unix-like operating system, no administrator privileges, no network connection, and storage primarily in plain text); modular design; minimal complexity; scalability; verifiable inputs and outputs; version control; linking analysis with narrative; and free and open-source software. As a proof of concept, we introduce "Maneage" (managing data lineage), enabling cheap archiving, provenance extraction, and peer verification that has been tested in several research publications. We show that longevity is a realistic requirement that does not sacrifice immediate or short-term reproducibility. The caveats (with proposed solutions) are then discussed and we conclude with the benefits for the various stakeholders. This article is itself a Maneage'd project (project commit 313db0b). Appendices-Two comprehensive appendices that review the longevity of existing solutions are available as supplementary "Web extras," which are available in the IEEE Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/MCSE.2021.3072860. Reproducibility-All products available in zenodo.4913277, the Git history of this paper's source is at git.maneage.org/paper-concept.git, which is also archived in Software Heritage Heritage: swh:1:dir:33fea87068c1612daf011f161b97787b9a0df39f. Clicking on the SWHIDs in the digital format will provide more "context" for same content.es_ES
dc.language.isoenges_ES
dc.publisherComputing in science&engineeringes_ES
dc.relation.ispartofseries;vol. 23, nº 3
dc.relation.urihttps://ieeexplore.ieee.org/document/9403875es_ES
dc.rightsopenAccesses_ES
dc.subjectsoftwarees_ES
dc.subjectcontainerses_ES
dc.subjectkerneles_ES
dc.subjectlibrarieses_ES
dc.subjecttoolses_ES
dc.subjectvirtual machininges_ES
dc.subjectbuildingses_ES
dc.subjectworkflow managementes_ES
dc.subjectsystemses_ES
dc.subjectdatabase managementes_ES
dc.subjectinformation technology and systemses_ES
dc.subjectknowledge and data engineering tools and techniquekes_ES
dc.subjectcomputers in other systemses_ES
dc.subjectcomputer applicationses_ES
dc.subjectWOS(2)es_ES
dc.subjectScopuses_ES
dc.titleToward Long-Term and Archivable Reproducibilityes_ES
dc.typearticlees_ES
reunir.tag~ARIes_ES
dc.identifier.doihttp://dx.doi.org/10.1109/MCSE.2021.3072860


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem