• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 4, nº 7, march 2018
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 4, nº 7, march 2018
    • Ver ítem

    Savana: Re-using Electronic Health Records with Artificial Intelligence

    Autor: 
    Hernández Medrano, Ignacio
    ;
    Tello Guijarro, Jorge
    ;
    Belda, Cristóbal
    ;
    Ureña, Alberto
    ;
    Salcedo, Ignacio
    ;
    Espinosa-Anke, Luis
    ;
    Saggion, Horacio
    Fecha: 
    03/2018
    Palabra clave: 
    artificial intelligence; machine learning; NLP; electronic records; e-health; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/11903
    DOI: 
    http://doi.org/10.9781/ijimai.2017.03.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2613
    Open Access
    Resumen:
    Health information grows exponentially (doubling every 5 years), thus generating a sort of inflation of science, i.e. the generation of more knowledge than we can leverage. In an unprecedented data-driven shift, today doctors have no longer time to keep updated. This fact explains why only one in every five medical decisions is based strictly on evidence, which inevitably leads to variability. A good solution lies on clinical decision support systems, based on big data analysis. As the processing of large amounts of information gains relevance, automatic approaches become increasingly capable to see and correlate information further and better than the human mind can. In this context, healthcare professionals are increasingly counting on a new set of tools in order to deal with the growing information that becomes available to them on a daily basis. By allowing the grouping of collective knowledge and prioritizing “mindlines” against “guidelines”, these support systems are among the most promising applications of big data in health. In this demo paper we introduce Savana, an AI-enabled system based on Natural Language Processing (NLP) and Neural Networks, capable of, for instance, the automatic expansion of medical terminologies, thus enabling the re-use of information expressed in natural language in clinical reports. This automatized and precise digital extraction allows the generation of a real time information engine, which is currently being deployed in healthcare institutions, as well as clinical research and management.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_4_7_1_pdf_22755.pdf
    Tamaño: 913.2Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 4, nº 7, march 2018

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    29
    283
    354
    348
    92
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    19
    179
    185
    200
    59

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Características epidemiológicas de los neonatos nacidos en el hospital general josé maría velasco ibarra, Ecuador 

      Morales Carrasco, Alex Patricio ; Espinoza Díaz, Cristóbal Ignacio; Shiguango Shiguango, Nadia Neida; Pesantez Calle, María Fernanda; Ávila Vinueza, Johanna Priscila; Córdova Córdova, Henrry Sebastián; Guaraca Pino, Angélica Carolina; Pérez Granja, Ana Lucía; Méndez Cordero, Pedro David; Gutiérrez Yépez, María Belén; Morales Torres, Jorge Leonardo (Archivos Venezolanos de Farmacología y Terapeutica, 2019)
      Objetivo: caracterizar y describir el comportamiento epidemiológico de los pacientes con sinusitis del Hospital General del Norte de Guayaquil los Ceibos. Metodología: se realizó un estudio de tipo descriptivo, ...
    • Prevalence, characteristics, and impact of adverse events in 34 Madrid hospitals. The ESHMAD study 

      Valencia-Martín, José Lorenzo; Vicente-Guijarro, Jorge; San José Saras, Diego; Moreno-Nuñez, Paloma; Pardo, Alberto; Aranaz Andrés, Jesús María; ...et al.; Pardo Ortiz, María (European Journal of Clinical Investigation, 2022)
      Introduction: Adverse Events (AE) are one of the main problems in healthcare. Therefore, many policies have been developed worldwide to mitigate their impact. The Patient Safety Incident Study in Hospitals in the Community ...
    • Adverse events: an expensive and avoidable hospital problem 

      San José Saras, Diego; Valencia-Martín, José Lorenzo; Vicente-Guijarro, Jorge; Moreno-Nuñez, Paloma; Pardo, Alberto; Aranaz Andrés, Jesús María (Annals of Medicine, 2022)
      Introduction: Adverse healthcare-related events (AE) entail reduced patient safety. Estimating their frequency, characteristics, avoidability and impact is a means to identify targets for improvement in the quality of care. ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja